
AD-A246 492

WL-TR-91-2074

ELECTRON INTERACTIONS WITH NON-LINEAR POLYATOMIC
MOLECULES AND THEIR RADICALS AND IONS

Ashok Kumar Jain

Physics Department, Florida A&M University, Tallahassee, F 32307
&

Supercomputer Computations Research Institute (SCRI),
Florida State University, Tallahassee, F 32306

DTIC
June 1991 EL99T ,

INTERIM REPORT FOR PERIOD JUNE 1990 - JUNE1991
ADDroved for public release: distribution is unlimited

AERO PROPULSION AND POWER DIRECTORATE
WRIGHT LABORATORY
AIR FORCE SYSTEMS COMMAND
WRIGHT - PATTERSON AIR FORCE BASE, OHIO 45433-6563

92-04737

9 2 2 2 4 13 3 illlllllIllIltllll



NOTICE

WHEN GOVERNMENT DRAWINGS, SPECIFICATIONS, OR OTHER DATA ARE USED FOR ANY
PURPOSE OTHER THAN IN CONNECTION WITH A DEFINITELY GOVERNMENT-RELATED
PROCUREMENT, THE UNITED STATES GOVERNMENT INCURS NO RESPONSIBILITY OR ANY
OBLIGATION WHATSOEVER. THE FACT THAT THE GOVERNMENT MAY HAVE FORMULATED OR IN
ANY WAY SUPPLIED THE SAID DRAWINGS, SPECIFICATIONS, OR OTHER DATA, IS NOT TO
BE REGARDED BY IMPLICATION, OR OTHERWISE IN ANY MANNER CONSTRUED, AS UCENSING
THE HOLDER, OR ANY OTHER PERSON OR CORPORATION; OR AS CONVEYING ANY RIGHTS OR
PERMISSION TO MANUFACTURE, USE, OR SELL ANY PATENTED INVENTION THAT MAY IN ANY
WAY BE RELATED THERETO.

THIS REPORT HAS BEEN REVIEWED BY THE OFFICE OF PUBUC AFFAIRS (ASDIPA)
AND IS RELEASABLE TO THE NATIONAL TECHNICAL INFORMATION SERVICE (NTIS). AT
NTIS IT WILL BE AVAILABLE TO THE GENERAL PUBUC INCLUDING FOREIGN NATIONS.

THIS TECHNICAL REPORT HAS BEEN REVIEWED AND IS APPROVED FOR PUBLICATION.

ALAN GARSCADDEN LOWELL D. MASSIE
Power Components Branch Chief, Power Components Branch
Aerospace Power Division Aerospace Power Division
Aero Propulsion Laboratory

FOR THE COMMANDER

..... igh'I, Lt Ccl, USAF

'" ' . , ,r , ,,;-cto ra te

IF YOUR ADDRESS HAS CHANGED, IF YOU WISH TO BE REMOVED FROM OUR MAIUNG
LIST, OR IF THE ADDRESSEE IS NO LONGER EMPLOYED BY YOUR ORGANIZATION PLEASE
NOTIFY WL/POOC , WRIGHT-PATTERSON AFB, OH 45433-653'TO HELP MAINTAIN
A CURRENT MAILING LIST.

COPIES OF THIS REPORT SHOULD NOT BE RETURNED UNLESS RETURN IS REGUIRED BY
SECURITY CONSIDERATIONS, CONTRACTUAL OBLIGATIONS, OR NOTICE ON A SPECIFIC
DOCUMENT.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

Form Approved
REPORT DOCUMENTATION PAGE OMB No. 0704-0188

la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS
UNCLASSIFIED N/A

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
N/A Approved for Public Release;

2b. DECLASSIFICATION /DOWNGRADING SCHEDULE Distribution Unlimited
N/A

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

N/A 
WL-TR-91-2074

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONI (If applicable)
Florida A&M University i Aero Propulsion & Power Dir. (WL/POOC)

I Wright Laboratorv
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Physics Department, Florida A&M University
Tallahassee, FL 32307 Wright-Patterson AFB, OH 45433-6563

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable) F33615-90-C-2032

Wright Laboratory WL/POOC
6c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
WL/POOC-3 PROGRAM PROJECT TASK WORK UNITWright-Patterson AFB, OH 45433-6563 ELEMENT NO. NO. NO ACCESSION NO.W62203F 2003 12 03

11. TITLE (Include Security Classification)

Electron Interactions With Non-linear Polyatomic Molecules And Their Radicals And Ions

12, PERSONAL AUTHOR(S)

Jain, Ashok Kumar
13a. TYPE OF REPORT 13b. TIMW F.O C-P2/B.Rgu R / O 9 / 6 0 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Interim 8T010/O91Jn19

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP Electrons, Molecules, Cross Sections, Rotational Excitation,

2009 Scattering, Atomic and Molecular Physics

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
The low energy electron collisions with CH4, SiO 4 , H 2 0, NH 3 , and GeH4 has been studied
for elastic and rotational excitation channels. A parameter-free ab initio approach
is employed in which electron-exchange interaction is treated exactly and the polarization
effects via perturbation theory. The integro-differential coupled equations are solved
iteratively to yield scattering parameters. Detailed results are obtained for differential,
integral, and momentum transfer cross sections. The agreement with experimental data for
all the parameters is very good.

20. DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
E UNCLASSIFIED/UNLIMITED 0 SAME AS RPT. C DTIC USERS UNCLASSIFIED

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Patrick D. Kee 2/~t-- IHSAF 513 255-2923 WL/POOC

DD Form 1473, JUN 86 Previous editions are obsolete. SECURITY CLASSIFICATION OF THIS PAGE
UNCLASSIFIED



PREFACE AND ACKNOWLEDGEMENTS

This work was accomplished during the period June 1990 through June 1991 under the

Air Force Contract F33615-90-C-2032. The Air Force contract manager was Lt. Patrick

D Kee and the contract officer was Rebecca B O'Kelley. This technical report entitled

Electron Interaction with Non-Linear Pobaatomic Molccule. and their Radicals and Ions

was prepared at the Physics Department, Florida A& M University, Tallahassee, Florida.
We would like to thank the Florida State University's Supercomputer Re!.rch!, !nsti-

tute (SCRI) for providing supercomputer time on the CRAY-YMP machine. In addition

supercomputer time on the NMFECC CRAY--2 machine at Livermore was also made

available to us through SCRI, which is partially funded by the US Department of Energy

through contract no. DE-FC05-85ER250000. We extend our thanks to SCRI stal for

their help throughout the execution of this work. We would like to take this opportunity

to thank specially to Joe Lannutti (Director, SCRI), Chris Lacher (Chairman, Resource

Allocation Committee), Robert Holden (Manager, Supercomputing group), Jay Sollohub,

Doug Lee, Tom Combs, Dianne Brantly, Susan Fell, and many others at the SCRI and

innovation park facilities.

A part of the present research work was performed in collaboration with Professor F A

Gianturco (Department of Chemistry, University of Rome, Italy) and Dr. D G Thompson

(Department of Applied Mathematics and Theoretical Physics, The Queen's University of

Belfast, N Ireland). A travel grant from NATO (CRG 890470) is thankfully acknowledged.

We wish to thank Drs. K L Baluja and Shanthi Rao for carrying out some calculations

for this project. It is also a pleasure to thank our colleagues at the Physics Department,

FAMU. We are grateful to Drs. L Boesten, T W Shyn, 0 Sueoka, H Tanaka, M layashi,

and C Szmytkowski for sending their experimental data prior to publication.

We owe a considerable debt of gratitude to our President Frederick S Humphries for his

continuous support, inspiration, and encouragement for the success of this progress report.

Appreciation is expressed to Dr. Franklin Hamilton and his staff at the Sponsored Research

Office (FAMU) for their adinistrative sup)port. Our special thanks are to the Purchasing

and Comptroller's offices for dealing with the budget part of the project. Finally, we 0

express our gratitude to our Dean, Dr. Aubrey M Perry and his staff of the College of ------------

Arts and Science for their extremely helpful cooperation.
""i :.

! ,.: ,-. 1.
III Ltn " I ;,: :(2

____



iv



TABLE OF CONTENTS

Section Page No.

1. INTRODUCTION ............................... 1

2. SUMMARY OF WORK PERFORMED ...... ............... 3

3. LIST OF PUBLICATIONS (June 1990 - May 1991) ......... 5

4. REVIEW OF THEORETICAL APPROACH ............. 6

4.1 Single-Center-Expansion (SCE) Iterative Method ..... ............ 6

4.2 Static and Exchange Interactions ....... ................... 8

4.3 Polarization Interaction ........ ....................... .10

4.4 Cross Section Formulae ........ ....................... .13

5. REVIEW OF NUMERICAL DETAILS ..... ................ 17

5.1 Target Wavefunctions .......... ........................ 17

5.2 An Optimized Iterative Scheme ...... .................... .18

5.3 Computer Codes ......... .......................... 27

6. RESULTS AND DISCUSSION ...... .................... .29

6.1. Electron-CH 4 Cross Sections ....... ..................... .29

6.2. Electron-Sill 4 Cross Sections ...... ..................... .34

6.3. Electron-GeH 4 Cross Sections ....... .................... 64

6.4. Electron-NH 3 Cross Sections ....... ..................... .75

6.5. Electron-H 20 Cross Sections ...... ..................... .84

7. EFFECT OF GAS TEMPERATURE ON THE CROSS SECTIONS . 86

8. CONCLUSIONS AND FUTURE PROGRAM ... ........... .. 110

9. REFERENCES ........... ........................... 111

V



1. INTRODUCTION

This report describes the progress of the project entitled " Electron Interactions

with Non-Linear Polyatomic Molecules and their Radicals and Ions " for the

period June 1990 to June 1991. The present theoretical research was carried out under

the auspices of AirForce contract No. F33615-90-C-2032. The work was performed at

the Physics Department, Florida A&M University, Tallahassee, Florida with the direct

supervision and participation of Dr. Ashok K. Jain, Principal Investigator (PI). A part of

this project was performed in collaboration with Professor F A Gianturco (Department of

Chemistry, University of Rome, Italy) and Dr. D G Thompson (Department of Applied

Mathematics, The Queen's University of Belfast, N. Ireland). The collaboration with the

University of Rome was partially funded by the NATO (under contract No CRG 890470)

in terms of a 2-year travel grant. The computational work was fully supported by the

FSU's Supercomputer Research Institute (SCRI) in terms of supercomputer time on the

CRAY-YMP (at Tallahassee) and on the NMFECC CRAY-2 machine (at Livermore).

The overall goal of this project is to develop state-of-the-art computer programs

and to perform calculations on various elastic and inelastic cross sections for low energy

electron collisions with non-linear polyatomic molecules and their ions and radicals. It

is a well known fact that such a project involves a large amount of computing because

of complexities involved in the dynamics of the collision system. Our main purpose is to

produce a reliable set of useful cross section data for elastic as well as inelastic processes

without involving any fitting procedure. When electrons interact with neutral molecular

targets, time considerations of the electronic and nuclear motions allow us to treat rota-

tional, vibrational, and electronic processes rather independently. This is the so-called

adiabatic-nuclei-approximation (ANA) which has made ab initio electron-molecule calcu-

lations a dream come true. Even under the great simplifications introduced by the ANA

formulation, the treatment of electron-polyatomics is still a very difficult problem owing

to, for example, the multicenter nature of the interaction, the presence of non-local elec-

tron exchange, charge correlation and polarization effects and the opening of several other

rearrangement channels .

For the simple case of elastic (including rotational excitation processes) scattering at

the static-exchange level (neglecting short range correlation and long range polarization

effects), the solution of inhomogenous integro-differential coupled equations iteratively is

1



an arduous task for the case of non-linear targets. Consequently, it is not surprising

that just a few years ago, most of the electron-polyatomic calculations were carried out by

employing model potentials for exchange and polarization effects [1]. For the first time, our

group developed scattering codes [2-7] which solve electron-polyatomic scattering equation

iteratively to treat electron exchange effects exactly. To implement short range correlation

and long range polarization effects correctly is still an open problem. We, however, include

these charge distortion effects non-empirically using the perturbative techniques.

In brief, the electron-molecule problem is set up in the single-center-expansion (SCE)

scheme under the body-fixed (BF) coordinate system in the ANA close-coupling formula-

tion. The continuum electron function is obtained numerically for each irreducible repre-

sentation of the molecule point group. The convergence of bound and continuum functions

with respect to SCE size is tested properly to make this approach meaningful. No fitting

procedure is involved in all the cross sections discussed here. In addition, unlike the basis-

set dependent L2 type approaches [81, this method is free from producing any spurious

effects in the cross sections; thus given no previous information, theoretical or experimen-

tal, the present method is capable of predicting differential as well as integral cross sections

for various elastic and inelastic dynamical processes.

In Section 2, we provide a summary of work completed so far, and Section 3 gives

a list of published (or accepted) and submitted papers during the period June 1990 to

June 1991. The theory of the present calculations is presented in Section 4 and Section

5 provides the corresponding numerical details and a list of computer programs employed

for this work. In Section 4, we also discuss our recent method [61 on a most efficient use of

an iterative scheme in terms of computer time without sacrificing any numerical accuracy.

In Section 6, we discuss our main calculations on the rotationally elastic, inelastic

and summed cross sections for electron collisions from CH4, Sir 4, H20, NH 3, and GeH 4

molecules in the energy range of 0-20 eV. For all these species, experimental data on

the differential (DCS), integral and momentum transfer cross sections are available for

comparison. For the e-CH4 case, there are experimental data on the rotational excitation

process as well. In Section 7 we analyse the effect of gas temperature on the cross sections

and confirm several theorems of Shimamura [9-15]. Finally, concluding remarks on the

finished work and comments on the continuation of this project for the second year are

made in Section 8.
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2. SUMMARY OF WORK PERFORMED (June 1990 - May 1991)

1. The electron scattering from SiH 4 molecules at 0.01-20 eV now has been published

[Ashok Jain and D G Thompson, J. Phys. B24, 1087 (1991), Ref. 51. The exchange

(exactly) and polarization (approximately but parameter-free) are included to make a

direct comparison with experimental data. This is a detailed study on the low-energy

behaviour of electrons in silane gas. Our ab initio, parameter-free calculations clearly

exihibit the cross section minimum below 1 eV and a shape-resonance feature around

2-4 eV; this is in agreement with measured data. No any other ab initio calculation

(with polarization effects) on the e-SiH 4 low-energy cross sections with such details

and amount of cross section data is available in the literature.

2. In order to treat exchange effects exactly in an efficient way, we have suggested and

tested a new optimized iterative scheme to solve the integro-differential equations

more economically. The new scheme is more suitable for the case of polar molecules

where convergence problems are severe. In the optimized scheme, the continuum

wavefunction of the electron with full iterative procedure is calculated only once at

a selected energy, say E, i.e., fjt,(r; E). The fjj,(r; E) is employed as a starting

point for iterative scheme at other energies. We found for the H2 0 case (and very

rcently for the NH 3 case also) that the number of iterations required in the optimised

scheme is smaller, by a factor of two to three, than the usual one 16]. Further, we

noticed that the exact-exchange treatment is necessary for low partial waves only. The

non-penetrating higher partial waves can be described by a simple model exchange

potential under the density functional theory. Thus, the new scheme, which is very

economical and essential to treat polar molecules, can be described as follows. For low

partial waves (say e = fE), we consider full exact-exchange calculation; for f > CE,

say up to e = tM, we employ a model exchange (for example the free-electron-gas

exchange ) approximation; and finally for very high partial waves e > em, say f = (UB,

we use unitarised Born approximation. A paper on the optimized iterative scheme

with test calculations on the e-H 20 system has been published recently [Ashok Jain,

F A Gianturco and D G Thompson, J. Phys. B24, L225 (1991), Ref. 61.

3. We have investigated in great detail the effects of gas temperature on the rotational

excitations in a molecule (CH 4 and SiH 4 ) by slow electron impact. We have found that

the rotational excitation process is sensitive to gas temperature in an experimental
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situation and one should be careful in comparing theoretical rotational excitation

cross sections with measurements. In particular, for example, the theory predicts

zero cross sections at zero angle for the 0 --+ 3 rotational transition in a spherical

top molecule, while measurements (on the CH4 molecule) give non-zero DCS in the

forward direction [16].

4. We have studied various approximations to include polarization effects in the e-

SiH 4 collisions at low energies. In this calculation, we have employed two types of

parameter-free model polarization potentials alongwith exact-exchange effects. Our

conclusion is that a polarization potential determined from polarised-orbital type ap-

proach is a better model than the one from the target density functional theory.

5. The calculations on low-energy electron scattering with H20 and NH 3 gases are now

almost complete. We are currently testing convergence of the differential and total

cross sections for these polar gases, for which the ANA theory fails in the forward

direction. Our preliminary results on the differential as well as integral quantities

compare reasonably well with the experiment [A Jain and D G Thompson, 1991,

under preparation].

6. In addition, we have developed a single-center computer program [17] to expand

molecular quantities (orbitals, density, static potential etc.) around the center-of-

mass (COM) of the target from the calculations of Quantum Chemistry codes such

as the HONDO or GAUSSIAN. This work is being done in collaboration with the

group at Chemistry Department, University of Rome, Italy. We are in the process of

studying some big molecules such as the GeH4 , CF 4 , SF 6, etc.. The first calculations

on the e-GeH4 collisions have been carried out and results submitted for publication

[18].

The computing facilities, provided by the FSU's SuperComputer Research Institute

(SCRI), have been excellent in order to carry out the above programs effectively. We have

made use of supercomputers (CRAY-2 at the NMFECC, Livermore and CRAY-YMP at

the SCRI, Tallahassee) through the FSUCC allocation committee. Most of the graphical

work and small calculations were carried out at the FSU's and SCRI's VAX machines

which serve as front-end system for the supercomputers.
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3. LIST OF PUBLICATIONS (June 1990 - May 1991)

Papers Published/Accepted:

1. " Theoretical Study of Low-energy Electron-SiH 4 Collisions using Exact Exchange

plus Parameter-Free Polarization Potential, " by Ashok Jain and D G Thompson.

J. Phys. B24, 1087 (1991).

2. " Effect of the Gas Temperature on the Rotational Excitation of Spherical Top

Molecules by Low Energy Electrons: CH 4 and SiH 4 .," by Ashok Jain. (to appear in

Z. Phys. D, Atoms, Molecules and Clusters, 1991)

3. " Exact-Exchange Treatment in Electron-Polyatomic Molecules in a Computation-

ally Optimised Iterative Scheme, " by Ashok Jain, F A Gianturco and D G

Thompson, J. Phys. B24, 255 (1991).

4. " Polarization Effects in Low-Energy Electron Scattering from Silane Molecules Treat-

ing Electron Exchange Correlation Exactly, " by Ashok Jain, Phys. Rev. A44, 772

(1991)

Papers Submitted for Publication

5. " Differential, Integral and Momentum Transfer Cross Sections for Electron Scattering

with Germane (GeH 4 ) Molecules at 1-100 eV, " by Ashok Jain, K L Baluja, V

Di Martino and F A Gianturco. (Accepted in Chem. Phys. Lett., 1991)

Papers under preparation

6. " Slow Electron Collisions with H20 Molecules in an Exact- Exchange plus Parameter--

free Polarization Potential Model, " by Ashok Jain and D G Thompson. (to be

submitted to J. Phys. B ).

7. " A Theoretical Study of Slow Electron Impact from Ammonia (NH 3 ) Gas: Rota-

tionally Elastic, Inelastic and Summed Cross Sections, " Ashok Jain and D G

Thompson (to be submitted in Phys. Rev. A, 1991).
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4. REVIEW OF THEORETICAL APPROACH

When low-energy electrons interact with molecular targets, several processes, elastic

and inelastic, can take place in the present energy region ( E < 20 eV ),

e- + AnBm e- + AnBm (elastic)

e- + (AnBm)* (inelastic; vibrational and/or rotational)

(There are also other inelastic processes such as the electronic excitation, dissociative,

associative, or ionization channels.) The basic Schr6dinger equation involves ani interaction

Hamiltonian and the corresponding wave function of the total system,

(Hint- E)P T(r, ri, R) = 0, (4.1)

where the electron-molecule Hamiltonian is given by,

Hint = Heiec(ri; R) + Vi,(r, ri, R) + Hn,(R). (4.2)

Here r represents the projectile electron's coordinate and ri and R collectively represent the

target electronic and nuclear coordinates respectively. It is not possible to solve equation

(1) exactly for any of the channels or collision systems. We first describe the iterative

techniques to solve integro-differential (see below) equation under the SCE formalism.

4.1. Single-Center-Expansion (SCE) Iterative Method

In order to obtain various elastic and inelastic cross sections (differential as well as

integral), we make use of the adiabatic-nuclei-approximation (ANA) [19] and set up our

scattering equations in the SCE scheme under the close-coupling formalism. The FNA is

generally a very good approximation except in certain cases: for example, near threshold

and sharp shape-resonance energy regions, for polar molecules, etc.
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In the body-fixed (BF) frame of reference, the time-independent Schr6dinger equa-

tion of the electron-molecule system reads as (omitting the parametric dependence on

internuclear coordinates R),

[- 2 + Helec(r) + Vi.t - E] 'T(r,r,) = 0, (4.1.1)

where the operators in the bracket are respective]-, the kinetic energy operator of the

scattered electron, the unperturbed molecular target Hamiltonian, the interaction potential

of the electron-molecule complex and the total energy of the system. The total wave

function XPT can be expanded such that,

n

XT = A Z4i(rl, r2,... rz)F,(r), (4-1.2)
z=l

where Il, are the target electronic states and any other suitable pseudostates that can

represent the target response function to the polarization of the molecule because of the

incoming electron. The continuum function F,(r) describes the projectile motion in molec-

ular state i and A is the usual antisymmetrization operator to ensure Pauli principle. In

the expansion (4.1.2), we have neglected the correlation functions of the (N + 1)-electron-

molecule complex.

We can assume that the center of the electron-molecule system is at the center-of-

mass (COM) of the target. The spin of the scattered electron is coupled with the total spin

of the molecule to form an eigenstate of S2 and its projection along the symmetry axis (

say S, ) corresponding to the total spin quantum number S and its substate Ms which are

constants of motion during the collision. Each of these eigenstates can be expanded over

the set of angular functions according to the prescriptions of a BF frame of reference which

provides the basis of an irreducible representation (IR) pp of the molecular symmetry point

group. Thus we can write the total wave function as,

n

,PjLMS -=3 3 )P SS M(rI, r 2 ... rz, i, i)(r 1F4 SAls (r), (4.1.3)
T=1 th

where o is the spin variable of the scattered electron. The functions ( in equation (4.1.3)

are defined as,

7



OAppSMs , (r, r2 1 ... rz)XSu(Vr(, M, )C (4.1.4)
ith =, t (, ms M MsMsi Mai

where 71's are electron spin functions for the scattered electron and C's are the Clebsch-

Gordon coefficients. The bound orbitals €i describe Z-electron target wave function used

in expansion (4.1.4), each transforming like a particular IR of the molecular point group

and with a specific total spin eigenstate. The main molecular symmetry axis defines the

Ms direction.

As a standard technique, we now project the scattering equation onto the channel

functions and obtain the well known coupled integro-differential equations for each scat-

tered electron channel function (pyS):

d 2  ei(i + 1)
[-r r- + kl]Fih 

5 (r) = 2 E ["eehr) W1 us  "(" (4.1.5)_r2 r2 I i .. = I P h,i't'h'(r) + Ulh,ith'# )], (415
11=1 f h

4.2 Static and Exchange Interactions

The direct potential matrix VPPs defines the coupling between two channel functions

through the Coulomb operator (for details see Ref. 1). The exchange interaction is repre-

sented by the non-local term, WPOS, which gives rise to the integro-differential nature of

the coupled scattering equations. We do not give all the details here for obvious reasons

(see Ref. 1 for full details). For a closed-shell molecule, belonging to the totally sym-

metric 'A, IR of the molecular point group, equation (4.1.5) does not depend on the spin

quantum numbers. The equation (4.1.5) is known as the static-exchange interaction of the

electron-molecule system if we retain only the ground state (i = 1) of the target. From

a numerical point of view, it is convenient to include the target distortion (polarization)

effects via a model potential added to the direct potential matrix in equation (4.1.5). At

short distances, the correlation effects can be treated in a similar fashion. The exchange

term in equation (4.1.5) is basically of the following type,

8



WPI, = E J 0 (x)Ir - xi-'FP1'(x) dx¢,(r), (4.2.1)
of

Recently a program has been developed to treat W P,' exactly under the iterative

procedure2 . Under the static-exchange plus (model) polarization (SEP) model, the

integro-differential coupled equation to be solved for a closed-shell system for each sym-

metry pp is rewritten from Eq. (4.1.5) as (suppressing the py symbol for simplicity)

d 2  ey + 1) + k 2]Fth(r)= 2Z[ViIhe(r) + + Wehih(r)], (4.2.2)
dr2 r 2 hth+Wh,

V' h'

The potential matrix V,t, h' in Eq. (4.2.2) is determined from the following expression

for the static potential

z M

Vt(r) ] 1II02 {E Ir - rjI-'dridr2 ... drz} - E ZjIr - RiD-'. (4.2.3)
j=l i=1

where (o is the target ground state wavefunction given as a single Slater determinant of

one-electron Z spin orbitals O,(r) and M the number of nuclei in the molecule.

In a model exchange problem, the non-local exchange term in the right hand side of

Eq. (4.2.2) can be replaced by a local potential, say t ht,h,(r). A very popular form of

Vex(r) has been the free-electron-gas-exchange(FEGE) approximation which was mod-

ified by Hara [20] (to be denoted by HFEGE) for electron-molecule collisions. In the

HFEGE, the Vex reads as

2 1 1~2 1+,i1

Vex(r) = 2kf(r){- + lnI1-- + , (4.2.4)
7r 2 47 1-

where, kF(r) = (37r po(r))S and vj = (k2'+2I+kF)/kF. Here I is the ionization potential

of the target and po(r) is the unperturbed charge density of the molecule. Several versions

of HFEGE are available by varying the value of I [21]. Thus, writing the integro-differential

equation (4.2.2) in a convenient matrix form, LF = WF where WF is the exchange term,

9



the iterative scheme is LF' = WF' - ', where i = 0, 1,.... In order to start the solution,

we chose F0 to be the solution obtained from the HFEGE potential (4.2.4). Our earlier

scattering code (POLY, see Section 5.3) has been modified for the solution of Eq. (4.2.2).

The new code (POLYEX) is now working successfully on the CRAY-2 and FSU's VAX

and CRAY-YMP systems.

4.3 Polarization Interaction

It is very hard to include polarization effects accurately; however, the asymptotic form

is known exactly, i.e.,

-1 4 1( 4 7)OIS2Vpoi(r,,)= 0, 14[(47r)Sol +02(7r) Iol a( (4.3.1)

r4 [ao(47 S1 0 5 2 2)15 2

where the S," is a real spherical harmonic (see Ref. 1 for its definition and various

properties ), (r,0, 0) are the coordinates of the projectile referring to the center of the

target and the spherical (a0) and nonspherical (a2 and a2 ) polarizabilities are expressed

in terms of the polarizability tensor aii of the target, namely,

1 2 1 1
ao (al +a22+ C33) a2= -a33- -all - -a22); a2 = akl - a 2 2 .3~ai +32+a3;a 2 2

In order to represent the VPOI at short distances, one has to introduce some kind of

adjustable parameter(s) in the cut-off function which is multiplied to the right hand side

of equation (4.3.1). The value of the unknown parameter is determined by the fitting pro-

cedure. An important development was made by our group in evaluating an approximate

parameter-free polarization potential [22] based on the second-order perturbation theory

[23] and the criterion of Temkin [24]. In this method, the molecule is supposed to be in an

electric field E = Ei ( produced by the incoming electron) at r(rO4), which results in an

extra potential energy V, the leading term of which is given by,

Z
V(rl,r 2,...rz; E)= E--ri

t=1

Z

= EZ ri'. ii (4.3.2)
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The energy of the molecule in the electric field can be expanded as a Taylor series in

Ei(i = 1, 2, 3), the components of E along the axes of our coordinate system. The second

order energy reads as

w2= E ijj, (4.3.3)

In the method of Pople and Schofield [23], the first order wave function t is expanded

in terms of ground-state to functions as

z
't = to f(ri)- E, (4.3.4)

i=1

where unknown coefficients f's are determined variationally from the following expression

of W 2, i.e.,

W2 = (DlIHmoi - W0 lt) + 2(4'oIVlsi). (4.3.5)

The success of this parameter-free model for the polarization potential (to be de-

noted as the JT polarization approximation) along with an exact treatment of exchange

has been exceptional in our recent investigation of the low-energy electron-CH 4 interac-

tions [3]. This is demonstrated in the following Fig. 4.1, where we have shown our elastic

(rotationally summed) DCS for the e-CH4 system at 0.6 eV. There is no other ab initio

result at this rather low energy and therefore, we have compared our calculations in three

models: one, SEP(JT) (exact exchange plus JT potential), solid line; two, SEP(CP), (ex-

act exchange plus the correlation-polarization (CP) [25] potential) and; third, MEP(JT)

(model-exchange (HFEGE) plus JT potentials [22]). The experimental data in figure 4.1

are taken from Sohn et al [26]. We are dealing here with the DCS which are very sensitive

to the theoretical model and this is clearly seen in Fig. 4.1. The shape of the DCS is

greatly affected by the approximations for exchange and polarization interactions. Our

SEP(JT) model, which is employed in the present project, is a most successful approxima-

tion. Our earlier results [22,27] using JT potential along with HFEGE approximation (plus

the orthogonalization technique [21]) for exchange are not recommended now in the low-

energy region. We emphasize here that it is essential to include exchange effects exactly in

11



any low-energy electron-molecule scattering problem. The use of another parameter-free

model for the polarization potential based on the correlation energy of the target [25] is

good enough only at higher energies (above 1 eV) [3]; however, at very low energies, po-

larization effects are best represented in a much sophisticated ab initio polarized-orbital

type approach [22].

100 . * * * * * ° *

0-

C 10-2

"u 10- 3  
t

. . . . 1 ... .

0 50 100 150

Angle (deq)

Fig. 4.1 Elastic differential cross sections for the e-CH 4 scat-

tering at 0.6 e V: Theory: solid line, exact-exchange plus JT polariza-

tion model; dashed line, exact- exchange plus CP polarization model

[25]; dotted line, model exchange (HFEGE) plus orthogonalization

including JT polarization potential. The open squares represent the

static-exchange (no polarization) results. Expt.: x, Sohn et al. [26]
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4.4 Cross Section Formulae

We now summarise our cross section formulae. As a special case, we will provide

explicit expressions in the simple case of spherical molecules such as the CH 4 , SiH 4 etc..

For full details we refer to our review article [1]. In this project, we have investigated

mainly the rotationally elastic, inelastic and summed channels for differential, integral,

momentum transfer and energy-loss cross sections. As mentioned above, we solve our

scattering problem in the fixed-nuclei approximation under the BF frame of reference. In

order to obtain physical parameters, we transform the BF scattering amplitude, f(k . i) (

c and f are respectively the initial and final directions of the projectile ) into the space-

fixed amplitude f(k. i'; a 3 -y) ( where fr' now refers the direction of scattered electron with

respect to SF coordinate system and (aO3-y) are the three Euler angles ) by making use of

rotation matrices. The SF scattering amplitude is given by,

1(k.; 00 7r(2e + 1 2 Y0 (-,
th mf' h'm' p

,(a1)D0,( )(S, ,  '6 hh'), (4.4.1)

where b's are defined earlier', D's are the rotation D-matrices and S is the scattering

S-matrix. In the impulse approximation [281, the scattering amplitude for a particular

rotational transition JKM --+ J'K'M' is written as,

f(JKM --+ J'K'M') = (,JKMVAlf(ki.';aOk/J)I )J'KM'), (4.4.2)

where IC'JKM) is the rotational eigenfunctions of a molecule (asymmetric, symmetric or

spherical tops) which are given in standard texts. Expressions for a general asymmetric top

are discussed in Ref. 1. Here we discuss formulae for spherical tops only. The differential

cross section for the J -- J' transition is obtained by summing over all final magnetic

substates K'M' and averaging over all initial substates KM, i.e.,

d- (J --+ J')= P + 1)2 5 If(JKM --, J'K'M')I, (4.4.3)
TQk(2J + KAIK'AI

where k' is the wavenumber of the scattered electron given by the relation
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2k' 2 = 2k 2 + Ej - Ej, (4.4.4)

For a spherical top molecule, the energy of the Jth level is given by Ej = BJ(J + 1),

where B is the rotational constant of the molecule in question. It is convenient to express

the DCS in terms of Legendre polynomials,

do, k' 2tm,+l
d- (J --, J')= k E AL(J --* J')PL(cos 0). (4.4.5)

L

Here 0 is the scattering angle between the vectors k and r'. The expansion AL

coefficients are found to be [27],

A L( J --+ ') = (2 J ' + 1 )(2 L + 1 )( -1) L  , -
( 2 (2 + ) =j j(21 + 1)(21' + 1)(21+ 1)(2' + 1)] fz (-i)

4k2 (2J + 1) '

00L)) (4.4.6)
0 0 0 0 0 (-1)jW(11'P1 '" jl .1M UP -- 4.4.6)

where the M-matrix is defined as

It, m ) -1) -P1 P (4.4.7)M. bih m t  M j l'' IWh,i1h'

mmt hh' pj

Here, as usual, the T-matrix is defined in terms of the S-matrix as T = (S - 1) where

S = (1 + iK)(1 - iK) - . The scattering K matrix for each symmetry (pp). In equation

(4.4.7) (a b cis a 3-j symbol, W(abcd; ef ) is the well known Racah coefficient and

the b7'm coefficients are the expansion terms in the definition of symmetry-adapted basis

functions in terms of real spherical harmonics [1]. From equation (4.4.5), it is easy to find

simple forms of the total (at) and momentum transfer (am) cross sections in terms of AL

coefficients, namely

~j*' = 47rA(J - J') m= 47r[Ao(J -- J') - AI(J-- J')]. (4.4.8)
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It is easy to determine A 0 and A1 coefficients for aG and o,, rather than the full

expansion (4.4.6) for the DCS. For example, the A 0 and A, are given by the following

simpler expressions,

Ao = -g(JJ') (4.4.9)
4k 2  ~ 1jM,' '(.49

and
3+

A, "k 2g(Jg ) + (1)+±J[{(e± 1)(e' + 1)}w1,(if'+ it'+ 1;/1)MWe f 1t1+1

+ {I(e' + 1)} wef' - l~et + 1;j1 M j~M~'i,1+ I f+ + j
+ {(e + 1)'} W(ee'e± +e 1 -1;)Mt, +

+ (fe') w(e'e - ie' - 1;jl)Mt, j  j-'j -, ] (4.4.10)

where g(JJ') represents the statistical (2J' + 1)/(2J + 1) factor. The vibrationally elastic

(rot,tionally summed) cross sections are obtained by summing over J' for J = 0. The

selection rule for the transition J --+ J can easily be worked out from the asymptotic form

of the static potential (4.2.3) which transforms as 'A, symmetry of the molecular point

group. For any specified values of J and J', the angular momentum transfer j (Eq. 4.4.6)

takes the following values,

IJ-J'I_< +J+J' ; Il-l'Il t l', (4.4.11)

In addition, calculations on the polar polyatomic molecules ( H20 and NH 3 ) need

further attention in order to remove the defficiencies of the ANA formalism towards conver-

gence of the differential and total integral cross sections [see Refs. 29-30]. We employ the

multipole-extracted-adiabatic-nuclei (MEAN) approximation [30]. In the MEAN method-

ology, a maximum use has been made of the first-Born-approximation (FBA) for the higher

symmetries and partial waves. So far, such a program exists only for the linear molecules

and we have modified our previous code [see Section 5.3]. Finally, in the MEAN approxi-

mation, the differential cross sections (DCS) for a rotational transition J --- J are written

as [30],

d a , d rF B A k E1 A m ax F A ) 1 ( CS")(J= --' J)+-$'.ZCJt;00)] - Z (BAI - BFA pA(cos09),dQl dk (  J' ,X=0 xl

(4.4.12)
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where the first term is the usual closed form for the rotational excitation (J -+ J') DCS

in the space-fixed FBA; kj and kj, are respectively the wave vectors in the initial and

final channels; C( ...... ) is a Clebsch-Gordan coefficient; it is the angular momentum

transfer during the collision; B,, are the DCS expansion coefficients , expressed in terms

of scattering matrix, and BFA are the corresponding quantities in the FBA evaluated in

the BF coordinate system.

The expression for the space-fixed FBA quantities are given in Ref. 1. The important

quantity is the FBA differential and integral cross sections to be employed in equation

(4.4.12). Here we give these expressions explicitly,

da k' (2J' + 1) ) 00 2 2

d- (J _+ j k (2J + 1) J (2f + 1) 1  drr2vtm(r)jt(qr) . (4.4.13)

and the integrated quantity is expressed as

2(2J'+ 1) E (2e + 1) 1  k dq q dr r 2vfm(r)je(qr) 2 (4.4.14)
SIm Ilkk' 1

where dipole and quadrupole terms correspond respectively from J = 0 to J' = 1 and

2. It is to be noted here that except at very low energy (below 0.1 eV) the short-range

form of vem(r) coefficients is very important. We have included these coefficients exactly

at all radial distances, rather than employing the asymptotic form in terms of dipole,

quadrupole, etc. moments.
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5. REVIEW OF NUMERICAL DETAILS

In this Section, we provide a brief review of numerical and computational aspects of

the present report. The basic ingredients are the molecular wavefunction and the Coulomb

interaction to describe bound and bound-free quantities. A near-Hartree-Fock description

of the target is sufficient for the present purpose. Next, we summarise the target bound

functions, iterative procedure, and finally a list of computer programs employed.

5.1 Target Wavefunctions

For a polyatomic molecule, the multi-center target wavefunctions are easy to deter-

mine using standard Quantum Chemistry codes. In a single-center-expansion approach,

however, determining actual electronic densities around the bound nuclei still rquires a

large computational effort in order to represent correctly or with high precision the total

charge distribution. Relativistic effects are neglected in our present work and the sepa-

ration of electronic and nuclear motions is assumed under the usual Born-Oppenheimer

approximation (BOA). To understand the nature of polyatomic electrons, it is necessary to

consider the symmetry properties in terms of symmetry-adapted wave functions (SAWF).

For our purpose to study molecules like CH 4 , SiH 4 , GeH4 , H2 0, NH 3, etc., the SCE

approach is very successful. We employed a computer code MOLMON (see Section 5.3)

to generate bound orbitals at the fixed equilibrium geometry of the target. In general, the

molecular orbitals are written in terms of LCAO (linear combination of atomic orbitals)

centered at the COM of the molecule. In order to represent molecular states, we follow

the nomenclature of Herzberg [31]. In brief, the capital letter A is used to represent

one-dimensional IR with character +1, while for character -1, the letter B is used. For a

two-dimensional IR, the letter E is used, while a three-dimensional IR is denoted by letter

T. Suffixes 1,2,3.. are used to distinguish different IR's with the same dimensions. The

subcripts g or u differentiate between even (gerade) or odd (ungerade) representations of

the same class if inversion symmetry also exists (for example in the case of SF6 molecule).

Lower case letters (a, b, e, t etc.) are used to denote individual orbitals. For example the

ground state of the H20 molecule is written as follows: 1a2 2a 3a2 lb2 lb2 (1 A,).

For the present set of molecules, we have included up to fma, = 7 in the SCE expansion

of bound and continuum orbitals. The molecular quantities (such as the total energy,
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various multipole moments, etc.) obtained with the present SCE basis compare reasonably

well with the experimental and other sophisticated calculations (see Ref. 27).

5.2 An Optimized Iterative Scheme

The non-local and short-range exchange-correlation effects in low-energy electron

collisions with non-linear polyatomic molecules can be treated exactly by solving integro-

differential coupled equations iteratively [2] (for a comprehensive review see Burke and

Seaton, Ref. 32). Recently, this iterative exact-exchange program has been employed,

under the adiabatic-nuclei approximation, to investigate in detail the elastic and rotational

excitation processes in low energy e-CH4 and Sill4 collisions with and without polarization

interaction [2-7]. In all these calculations on the non-polar polyatomic gases, we were able

to include partial waves up to temax = 7 (n, -- 5 for Td symmetry, n, = 20 for C2,

symmetry and so on; here n, is the number of channels in the coupling scheme) and the

corresponding number of iterations for any symmetry and impact energy was 20-25 or less.

If the convergence is very slow, the iterative procedure may be undesirable to solve the

e-molecule problem.

The convergence with respect to number of iterations depends on several factors such

as the number of channels, impact energy, scattering symmetry, choice of starting solutions

etc.. Finally, we are interested in converged cross sections. However, for a polar gas, the

overall convergence problem is serious mainly because of long-range forces such as the

dipole and quadrupole moments. In addition, the size of the close-coupling K-matrix

increases rapidly with t in the cases of C2, (e.g., H20) and C3, (e.g., NH 3 ) point groups.

For example, for gmax = 7, we need to solve a 20 x 20 integro-differential coupled equation

for the case of C2, point group in its A, irreducible representation. Finally, for converged

cross sections (differential and total) in the ANA, we need even a much larger value of (max.

The calculation, therefore, becomes very (computer) time consuming if one has to solve

that many channels for each iteration, scattering state, and impact energy. We suggest an

economic and practical way to use the iterative scheme efficiently without sacrificing any

numerical accuracy and present some actual calculations on the e-H 20 systen at the static-

exchange level. In brief, we show that (1) it is sufficient to solve integro-differential coupled

equations (to be called as static-exact-exchange, SEE) only for few lower partial waves

(for example, imax = 4 are adequate for the e-H 20 case), and for higher t values, a model
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exchange (for example, free-elect ron-gas-exchange (FEGE) Hara [20] type) calculation

(to be called as static-model-exchange, SME) is quite close (within 1%) to the SEE K-

matrix elements ; and (2), the SEE continuum wave function calculated at any energy is a

very good guess to start solutions of the coupled equations at the next or other energies;

this reduces the number of iterations (n) appreciably (see later) to make the calculations

possible on a supercomputer.

At the static-exchange level [1], the Schr6dinger equation for the continuum electron

function FP"(r) for any irreducible representation (ppi) in the BF coordinate system can

be written as (see also Section 4.1),

2 +. V (r) IkFP')(r) = 2r')Ir - r'l-F(A')(r')dr(,,(r), (5.1)
2 0

where k is the incident electron wavevector and the static potential V, is given by Eq.

(4.2.3). Here (o is the target ground state wavefunction given as a single Slater determinant

of one-electron N spin orbitals 0,(r) and 'M is the number of nuclei in the molecule.

The right hand side of Eq. (5.1) is the non--local exchange-correlation term arising from

antisymmetrization of the e- molecule wave function. In the SME approach, this terin

is replaced by a local exchange potential and the corresponding scattering calculation

becomes quite easy computationally (see Ref. 1). The function f,j(r) in the following will

represent the radial part of the continuum function with channel indices I and j.

Finally, after projecting the integro differential equation (5.1) onto the synmetry-

adapted angular basis functions of F(PP)(r), we obtain a set of coupled integro-differential

equations (4.2.2) which can be written in a convenient matrix form, LF(P") = WF (P"),

where WF (PP) is the exchange term. The iterative scheme is LF(,p  - 1t( ") with

z= 1,2,....

To start the solution, we can choose F(10 to be the solutions obtained from the

asymptotically adjusted FEGE lotential [21]. For the case of non p,,lar molecules [2 6]

we employed the FEGE model to get F() pp) . However, such a scheinie is computationally

very expensive and unnecessary for the ves of lpolar inuiecule,. We suggest a different

optimized iterative scheme which is very econonlic aid convenient. In the following, we

omit the superscript (pi).

First, we show that one needs to solve the full integro differentinal Eq. (4.2.2) only

for a few low partial waves; for higher partial waves, a model exchaiige (SME) calculation
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is adequate. In Table 5.1, we have shown the Ka ,-matrix elements for e-H 20 collisions at

1 eV up to e = 3,4,5, and 6 in both the SEE and SME models. From this table it is clear

that for e > 4, the SEE and SME elements are almost identical. In Table 5.1, we have

shown only diagonal, dipole and quadrupole components; for other non-diagonal elements

the situation is similar, i.e., the SEE and SME models give identical values for e > 4. The

first-Born-approximation (FBA) dipole Ke,e±j elements are almost equal to the close-

coupling (SEE or SME) values for e > 3. The FBA quadrupole Kf,t±2 elements are within

10% of the exact results. This means that for higher values of angular momentum, the FBA

is a very good approximation [29]. We have illustrated this scheme of low-, intermediate-

and high-e values in Fig. 5.1. From Fig. 5.1, it implies that for low partial waves (say

0ma, = L,), we need the full SEE scheme, for e > Le (say emax = Lm), we can employ the

SME model and finally for e > L. (say emax = LB), the Unitarised-Born-Approximation

(UBA) [33] will be a good approximation. This partition is similar to the angular-frame-

transformation (AFT) scheme of Collins and Norcross [29], but differs in implementation

in an actual calculation. The UBA matrix is calculated up to a final emax = LB value and

finally the MEAN (multipole-extracted-adiabatic-nuclei) approximation can be used to

get the converged results on the differential and total cross sections [30].

We now demonstrate the second aspect of the present work. Suppose we want to

determine the SEE K-matrix at energy El. When FSMF (E 1 ) is used to start the iterative

scheme, it leads to the final ,IFE(Ei) converged continuum function after n iterations.

However, if we want to apply the same iterative scheme at another energy, say E2, we

can use either FsME(E 2 ) (requiring approximately the same number of n iterations) or
PSEEt PSE

nE(E 1 ) (requiring only i iterations) to obtain the final fEE(E 2 ) at energy E 2. We

will show that fi is much less than n and the final results converge to the same values,

i.e., FPSME(E2) = FSEE(E 2 ). If F(E) is a slowly varying function with respect to the

impact energy E, we can use a well converged scattering function at an energy El to

start the iteration at the next energy E2. First, in Fig. 5.2, we show various scattering

components foo(r) at 1 eV. The top solid curve (increasing rapidly with r) is the F~s ME (at

1 eV) (using the FEGE potential) case, while the lower solid curve is the corresponding

converged result with 24 iterations which we denote as F sE (at 1 eV). The dash curve

represents the F-SEE(at 0.5 eV) function at 0.5 eV. We see that the two SEE functions at

0.5 and 1 eV are very close to each other as compared to the SME curve at 1 eV. In our

scheme, however, if we use the dash curve of Fig. 5.2 to start the iterations at 1 eV, we end
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up with the same continumm function (lower solid curve in Fig. 5.2) with a much smaller

number of iterations, ii. In Table 5.2, we have shown various scattering parameters with

respect to SME and SEE (with different values of n and n) models. Thus, by using the

criterion,

FSEE(EP) = PSEEF n (Ep-1), (5-2)

to start iteration at a given energy Ep, we can save a significant amount of computer time

without loosing any accuracy (see Table 5.2).

Also, the number of required iterations depends almost linearly on the site of the K-

matrix. For example, a 16-channel problem requires 34 iterations as compared to only 24

in a 12-channel calculation (see Table 5.2). With the new optimized scheme (Eq. 5.2), as

described above, only a much smaller number of iterations are required to obtain desired

accuracy. Finally, in Fig. 5.2, we have shown the SEE continuum functions at several

energies for the foo(r) case only. We see from Fig. 5.3 that the energy dependence of

foo(r) is very weak in the inside region. At higher energies (for example at 6 eV, see Fig.

5.3), the electron functions start having more number of nodes.

A similar iterative scheme (Eq. 5.2) is useful at other symmetries (A 2 , B, and B2 )

of the e-H 2 0 collisions (not shown). In addition, when polarization effects are included,

the above optimization scheme is essential to produce the final cross section data. We

have examined the above iterative procedure for other systems such as the NH 3 and H2S

molecules [34].

In conclusion, we emphasize the fact that the iterative scheme to solve integro-

differential coupled equations can be used more efficiently and economically if we choose

a better zeroth-order function than the one based on the local exchange model to start

the iterative scheme; one such way is suggested here, i.e., by taking the final continuum

function at a previous energy as the starting zeroth-order function for the next energy (Eq.

5.2). This reduces the number of iterations by a significant factor (see Table 5.2). In addi-

tion, it is only the first few lower partial waves which are sensitive to the exact-exchange

treatment; next higher-order partial waves can be treated in a local model-exchange ap-

proximation. The number of partial waves sensitive to the exact-exchange treatment may

increase with an increase in the impact energy.
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TABLE 5.2.

K-matrix elements, Klt, tmi eigenphase sums and partial total cross sec-

tion for A, symmetry e-H 20 collisions at 1 eV. n is the number of iterations

when F S ME (at 1 eV) is used, while i is the corresponding number of itera-

tions when FSEE (at E=0.5 eV) is employed to start the iteration at 1 eV. The

number of channels is 9, i.e., max = 4. For various notations see the text.

Model for Fo Iterations CPU Koo,oo Koo,jo 6A, oA,

Units

SME 2 1.20657 0.37415 0.44386 48.7096

FSME(1 eV) n = 24 100 -0.38338 0.39166 -0.71237 27.2794
FSEE

F24 (0.5 eV) h = 3 10 -0.38438 0.39131 -0.71349 27.2818
FSEE

F24 (0.5 eV) h = 5 20 -0.38333 0.39190 -0.71209 27.2818

FSE (0.5 eV) n = 7 25 -0.38353 0.39176 -0.71239 27.2805

FSME(1 eV)* n = 34 265 -0.40834 0.40489 -0.71585 26.76

*Using 16(t = 6) channels
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LB  l.

FIG. 5.1. The angular-frame-transformation (AFT) scheme in the present exact-exchange

iterative procedure. The L, L,, and LU are the values of 4 az in the SEE, SME

and UBA models. For notations see the text.
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e-H 2 0 Scattering at 1 eV
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r( au)

FIG. 5.2. Continuum radial function (only spherical component) of the e-H 2 0 A, symmetry

collision at 1 eV. The upper solid curve is calculated in the FEGE approximation.
The lower solid curve is the converged SEE function employing the upper solid

curve as the starting point of the iterative calculation of Eq. 3. The dash curve

represents the continuum radial function at 0.5 eV.
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e-H20 (A, ESE)
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FIG. 5.3 Spherical component of the continuum radial functions for e-H 2 0 A, scattering

at various energies.
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5.3 Computer Codes

In order to carry out the present calculations, we used following computer codes

developed by our group during more than last 15 years. All these programs are now set up

on the VAX, CRAY-YMP and CRAY-2 machines at the FSU's supercomputer facilities.

1. MOLMON generates SCE target wavefunctions in terms of STO's. At present, this

code can include emax = 7 in the SCE of each orbital. This code is made available to

us by Professor F A Gianturco.

2. MOPE calculates expansion coefficient of the single center expansion of static po-

tential and electronic density from the orbitals generated by the MOLMON program.

Dr. D G Thompson wrote this code.

3. FEGE determines expansion coefficients of the SCE of FEGE or correlation polar-

ization potential. This code was written by S S Salvini.

4. ASYMP provides rotational eigenenergies and eigenfunctions of a symmetric top

molecule. The code was written by Ashok Jain, the PI.

5. POPLE calculates the polarization potential (see Sec. 4.3) by employing the Pople-

Schoffield method. The program was written by Ashok Jain, the PI.

6. POLY is the main scattering code written by N Chandra, modified for polyatomic case

by D G Thompson and later modified by Ashok Jain. This code calculates scattering

K-matrix, eigenphase sums and partial cross sections for a particular scattering state.

7. POLYEX is a modified version of POLY to implement the iterative scheme. This

code was developed by Paul McNaughten. Later, we modified this code to implement

optimised iterative scheme and also interfacing it with the HONDO code.

8. EROTVIB was written by Ashok Jain. It evaluates various cross sections for asym-

metric, symmetric and spherical top molecules from the K-matrix input of POLYEX

code.

9. RESON is a small code which determines resonance parameters from the given eigen-

phase sums.
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10. INTERFACE is an interfacing program between our POLYEX code and the Quan-

tum Chemistry HONDO program. INTERFACE calculates SCE quantities from mul-

ticenter electronic density, orbital and static potential quantities. The program was

written by Vi D Martino and Ashok Jain.

11. BORN is a general program which determines FBA quantities in the body-fixed

frame of references (Born K-matrices, Unitarised Born T-matrix etc.) and cross

sections (differential, integral and momentum transfer) in the space-fixed coordinate

system. This program has the provision to use numerical potential (rather than the

asymptotic form only). This code was written by Ashok Jain and later extended by

K L Baluja.

12. POLDEN determines the polarised charge density of the target by employing the

Pople and Shofeld method. This code was developed by Ashok Jain.

13. VIBAVEG calculates vibrational matrix element from the given R-dependent scat-

tering parameter (amplitude, potential matrix, multipole moments etc. ) and vibra-

tional eigenfunctions.

14. DERIV is a small program which determiaes first or second derivative of a given

R-dependent quantity (energy, multipole moments, cross sections etc. )
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6. RESULTS AND DISCUSSION

6.1 Electron-CH 4 Cross Sections

The results on the e-CH4 have been published recently [3-41. Here we provide our most

recent results on the rotationally elastic, inelastic and summed DCS integral, momentum

transfer, and energy-loss cross sections in Tables 6.1-6.2. These results can be compared

with recent measurements on the DCS, integral, and momentum transfer parameters. We

have carried out our calculations in the Ramsauer-Townsend (RT) minimum region, in the

7-8 shape-resonance regime and also at very low energies (below 0.1 eV). No any other ab

initio calculation has been extended to such a wide range of energy and several types of

cross sections.

A large set of differential, integral and momentum transfer cross sections for any

J -+ J transition (with any value of initial J value to a final allowed J value) are

available in tabular form from the P1. The energy range is 0.001-20 eV. In addition, we
have generated single center target basis functions for a large value of fmax = 20. In the

reported results (Tables 6.1 and 6.2), we have employed our earlier SCE wave function

with only emax = 7. The corresponding surfaces for electronic density, static potential and

individual bound orbitals are available on a radial mesh from the author of this report.

The CH 4 molecule has always served a prototype molecule for testing a theoretical model

for polyatomic targets. Our ab initio calculations with exact exchange and parameter-

free correlation-polarization potential have shown that observed behavior of DCS can be

described very well by theory even at very low energies.

The cross sections reported in Tables 6.1 and 6.2 are determined from our theory

described in the previous sections. In brief, exchange correlation is implemented exactly
and polarization effects are included approximately via a local real potential based on the
method of Pople and Shofield [23] and the non-penetrating criterion of Temkin [24], in

which the incoming electron is not allowed to penetrate the target charge cloud. In this

non-empirical calculation, our results at very low energies (RT minimum region) compare

very well with experiment. In addition, our value of -2.9 au for the scattering length for

the e-CH4 system compares well with the experimental value of -2.48 [35].
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TABLE 6.1(a).

Differential cross sections for the e-CH 4 rotationally elastic (0 --+ 0), inelas-

tic (0 - 3 and 0 --+ 4) and summed processes. All numbers are in units of

10 - 16 cm 2 . A number like 1.78-6 means 1.78x10 - 6.

0.5 eV 1.0 eV

Angle (deg) 0--0 0-*3 0-*4 total 0--+0 0--*3 0--+4 total

0 0.758 0.0 1.78-6 0.758 0.534 0.0 3.56-5 0.534

5 0.734 1.23-6 1.48-6 0.734 0.507 7.43-6 3.76-5 0.507

10 0.668 4.78-6 9.28-7 0.668 0.433 2.90-5 4.38-5 0.433

20 0.456 1.71-5 2.46-6 0.456 0.217 1.05-4 7.15-5 0.217

30 0.240 3.23-5 1.11-5 0.240 4.87-2 2.04-4 1.14-4 4.91-2

40 9.50-2 4.57-5 2.13-5 0.095 4.32-3 3.03-4 1.48-4 4.79-3

50 2.40-2 5.61-5 2.31-5 0.024 4.88-2 3.96-4 1.46-4 4.93-2

60 1.69-3 6.59-5 1.78-5 1.78-3 0.119 4.86-4 1.16-4 0.119

65 9.61-5 7.21-5 1.52-5 1.91-4 0.152 5.30-4 1.02-4 0.152

70 2.38-3 8.04-5 1.36-5 2.48-3 0.181 5.72-4 9.17-5 0.181

80 1.42-2 1.05-4 1.18-5 1.43-2 0.223 6.47-2 8.89-5 0.224

90 3.03-2 1.44-4 1.27-5 3.05-2 0.242 6.93-4 1.12-4 0.243

100 4.50-2 1.96-4 2.18-5 4.52-2 0.235 6.95-4 1.60-4 0.236

110 5.49-2 2.58-4 3.35-5 5.52-2 0.206 6.50-4 2.04-4 0.206

120 6.03-2 3.23-4 3.52-5 6.07-2 0.166 5.68-4 2.10-4 0.167

130 6.29-2 3.87-4 3.22-5 6.33-2 0.127 4.67-4 1.97-4 0.127

140 6.34-2 4.44-4 3.49-5 6.39-2 9.31-2 3.77-4 2.14-4 9.37-2

150 6.13-2 4.91-4 4.42-5 6.18-2 6.51-2 3.03-4 2.84-4 6.57-2

160 5.68-2 5.25-4 7.26-5 5.74-2 4.39-2 2.54-4 4.26-4 4.46-2

170 5.22-2 5.46-4 1.24-4 5.29-2 3.10-2 2.28-4 6.11-4 3.18-2

180 5.03-2 5.53-4 1.52-4 5.10-2 2.68-2 2.20-4 7.03-4 2.77-2
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TABLE 6.1(b).

Differential cross sections for the e-CH 4 rotationally elastic (0 --* 0), inelas-

tic (0 --* 3 and 0 --+ 4) and summed processes. All numbers are in units of

10-16 cm 2 . A number like 1.78-6 means 1.78x10 - 6.

3.0 eV 5.0 eV

Angle (deg) 0---0 0--3 0--+4 total 0---0 0--+3 0 --* 4 total

0 1.31 0.0 1.09-2 1.32 5.53 0.0 8.63-2 5.61

5 1.24 6.08-5 1.09-2 1.25 5.33 1.86-4 8.62-2 5.42

10 1.05 2.40-4 1.10-2 1.06 4.78 7.31-4 8.58-2 4.87

15 0.792 5.28-4 1.11-2 0.804 4.00 1.60-3 8.52-2 4.09

20 0.539 9.18-4 1.11-2 0.551 3.14 2.78-3 8.42-2 3.23

30 0.258 2.01-3 1.11-2 0.271 1.74 6.07-3 8.13-2 1.82

40 0.387 3.59-3 1.07-2 0.401 1.17 1.09-2 7.67-2 1.26

50 0.749 5.67-3 9.83-3 0.765 1.30 1.72-2 7.07-2 1.39

60 1.09 7.94-3 8.66-3 1.11 1.67 2.42-2 6.44-2 1.76

70 1.28 9.82-3 7.68-3 1.29 1.95 3.00-2 5.89-2 2.03

80 1.27 1.08-2 7.21-3 1.22 1.94 3.33-2 5.55-2 2.03

90 1.09 1.06-2 7.31-3 1.11 1.59 3.34-2 5.44-2 1.68

100 0.775 9.76-3 7.79-3 0.792 0.985 3.14-2 5.51-2 1.07

110 0.430 8.81-3 8.27-3 0.447 0.379 2.95-2 5.68-2 0.465

120 0.176 8.54-3 8.50-3 0.193 7.74-2 3.06-2 5.87-2 0.167

130 8.99-2 9.58-3 8.61-3 0.108 0.282 3.82-2 6.08-2 0.382

140 0.181 1.21-2 9.04-3 0.203 1.01 5.38-2 6.38-2 1.13

150 0.412 1.59-2 1.01-2 0.438 2.13 7.59-2 6.80-2 2.28

160 0.707 1.99-2 1.17-2 0.880 3.36 9.94-2 7.31-2 3.54

170 0.959 2.31-2 1.34-2 0.996 4.34 0.117 7.75-2 4.53

180 1.06 2.43-2 1.42-2 1.10 4.71 0.124 7.93-2 4.92
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TABLE 6.1(c).

Differential cross sections for the e-CH 4 rotationally elastic (0 --* 0), inelas-

tic (0 --+ 3 and 0 --, 4) and summed processes. All numbers are in units of

10 - 16 cm 2 . A number like 1.78-6 means 1.78x10- 6 .

7.5 eV 10.0 eV

Angle(deg) 0--+0 0--+3 0--+4 total 0-40 0--+3 0--+4 total

0 11.86 0.0 0.191 12.05 14.30 0.0 0.174 14.48

5 11.53 7.84-4 0.191 11.72 13.93 1.62-3 0.174 14.10

10 10.61 3.06-3 0.190 10.80 12.87 6.32-3 0.173 13.05

15 9.26 6.62-3 0.188 9.45 11.33 1.37-2 0.172 11.51

20 7.70 1.12-2 0.185 7.89 9.53 2.31-2 0.170 9.73

30 4.77 2.22-2 0.178 4.97 6.09 4.51-2 0.166 6.30

40 2.84 3.44-2 0.170 3.05 3.63 6.73-2 0.161 3.86

50 1.94 4.64-2 0.160 2.14 2.19 8.51-2 0.156 2.43

60 1.66 5.63-2 0.151 1.87 1.45 9.52-2 0.153 1.70

70 1.63 6.22-2 0.143 1.83 1.12 9.55-2 0.149 1.37

80 1.55 6.23-2 0.137 1.75 0.955 8.62-2 0.146 1.19

90 1.22 5.65-2 0.133 1.41 0.728 6.92-2 0.142 0.939

100 0.672 4.68-2 0.132 0.85 0.391 4.87-2 0.138 0.579

110 0.152 3.78-2 0.134 0.325 0.103 3.17-2 0.135 0.272

120 2.01-2 3.68-2 0.137 0.195 0.107 2.68-2 0.135 0.271

130 0.525 5.11-2 0.142 0.719 0.576 4.15-2 0.137 0.757

140 1.70 8.37-2 0.148 1.94 1.54 7.83-2 0.141 1.76

150 3.37 0.131 0.153 3.65 2.85 0.132 0.144 3.13

160 5.14 0.181 0.158 5.48 4.24 0.188 0.144 5.20

170 6.51 0.219 0.160 6.89 5.32 0.231 0.142 5.69

180 7.03 0.233 0.161 7.43 5.72 0.248 0.141 6.12
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TABLE 6.2.

Rotational excitation cross sections for the e-CH4 system (10-16 cm 2) in

the ESEP model. A number like 6.57-5 means 6.57x 10- 5.

Ort  O'm

Energy(eV) 0-*0 0--+3 0--+4 total 0--+0 0-*3 0-*4 total

0.1 4.46 6.57-5 3.26-5 4.46 2.68 1.04-3 3.95-5 2.68

0.2 1.95 3.91-4 7.22-5 1.95 6.37-1 6.12-4 8.87-5 6.38-1

0.3 1.143 9.79-3 1.20-4 1.144 2.76-1 1.50-3 1.52-4 2.78-1

0.4 0.91 1.73-3 1.97-4 0.91 3.76-1 2.57-3 2.54-4 3.79-1

0.5 0.91 2.52-3 3.20-4 0.91 6.11-1 3.63-3 4.15-4 6.15-1

0.6 1.02 3.30-3 4.91-4 1.025 8.81-1 4.53-3 6.37-4 8.86-1

0.8 1.41 4.70-3 1.07-3 1.42 1.41 5.71-3 1.36-3 1.417

1.0 1.90 6.14-3 2.09-3 1.91 1.89 6.44-3 2.57-3 1.90

2.0 4.94 3.26-2 2.28-2 4.99 4.24 3.37-2 2.42-2 4.30

3.0 8.73 0.115 0.112 8.96 7.55 0.139 0.111 7.80

4.0 13.35 0.252 0.355 13.96 11.92 0.322 0.344 12.58

5.0 18.29 0.420 0.799 19.51 16.34 0.548 0.772 17.66

6.0 22.36 0.578 1.329 24.27 19.31 0.747 1.283 21.35

7.5 25.28 0.738 1.856 27.88 20.02 0.901 1.795 22.73

10.0 24.81 0.903 1.840 27.58 16.75 0.968 1.778 19.53

15.0 20.83 1.189 1.20 23.28 10.81 1.086 1.114 13.10

20.0 17.60 1.297 0.850 19.85 7.57 1.119 0.729 9.56
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6.2 Electron-SiH 4 Cross Sections

Here we discuss the low energy electron collisional cross sections from silane molecules

in the exact-static-exchange plus polarization (ESEP) model. For comparison purpose, we

will also include static-model-exchange plus polarization (SMEP) results; this comparison

will give us an idea of the importance of exchange effects in this low energy region. The

results without polarization (ESE) will also be included in the following discussion.

6.2.1. Elastic ( Rotationally Summed ) Cross Sections

The electron-silane cross sections are very important from the point of view of plasma

physics [36].There are several experimental [36-451 and theoretical studies [46-51] on the

low energy electron interactions with Sill4. Similar to CH 4 case, the e-SiH 4 low energy

cross sections are characterised by RT minimum below 1 eV and a shape resonance feature

around 2-4 eV. Very recently, low energy DCS have been measured by Tanaka et al. [45].

We first discuss the qualitative features of low energy e-SiH4 cross sections such as the

RT minimum below 1 eV and a 3-4 eV shape resonance phenomenon. Figs. 6.2.1 and 6.2.2

illustrate the eigenphase sums for various scattering symmetries in the 0.1-20 eV region.

It is clear from Fig. 6.2.1 that the present ESEP (solid curve) is responsible for (nearly)

the correct position of the minimum (around 0.25 eV in a recent swarm study of Kurachi

and Nakamura, Ref. 43 ) because of the Al scattering symmetry. Note that our earlier

SMEP (static, FEGE and the JT polarisation potentials) results (Jain and Thompson,

Ref. 46) or the present ESE (without polarization) curves are incorrect in this low energy

region. The value of the position of this minimum as obtained by Yuan [50] in the spherical

approximation is quite low (around 0.11 eV). Other calculations, where exchange is treated

via a model local potential (Gianturco et al [48]; Jain et al. [47]), do not give reliable results

in this rather low energy region. In Fig. 6.2.2, we have shown the eigenphase sums for the

T 2 and E symmetries above 1 eV. Also shown in this figure is the SMEP curve for the T 2

state. The ESEP curve clearly exihibits a shape resonance phenomenon around 3 75 eV:

this structure is due to the d-wave of the incoming electron's partial waves. Therefore, the

E symmetry (which also have a d-wave component) also exihibits a weak shape resonance

feature at about 4 eV. As'we will see later, the ESEP curve is more realistic compared to

our previous model exchange (FEGE) calculation (the dash curve of Fig. 6.2.2 is due to

Jain and Thompson [46]).
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The corresponding behaviour of the ESEP partial cross sections in various scattering

states is illustrated in Fig. 6.2.3 for all the dominating states (A1 , E and T2) below (curve

6.2.3(a)) and above (curve 6.2.3(b)) 1 eV impact energy. Here we see a visual effect of

the minimum and the maximum in the cross sections for various scattering states. In

these figures ( 6.2.3(a) and 6.2.3(b) ), we have also included the SMEP results of Jain and

Thompson [46] for the A1 and T 2 states for comparison purpose.

We now discuss our rotationally summed (vibrationally and electronically elastic)

differential cross sections in the energy range from 1.8 to 20 eV, where recent absolute

measured values are available (Tanaka et al [45]). These results are depicted in Figs.

6.2.4(a) through 6.2.4(j) along with the experimental data of Tanaka et al. For comparison

purpose, we also show our ESE results (dash curves in Figs. 6.2.4(a)-6.2.4(j)) where

polarization effects are switched off. This comparison (between solid and dash curves) gives

us an idea about the importance of polarization effects in this energy range for various

angular regions. We can clearly see that the polarization interaction changes the shape

(and magnitude too) of the DCS at all energies considered here. It is quite clear from these

Figs. (6.2.4(a)-6.2.4(j)) that the ESEP curves agree much better with the experimental

data as compared to the ESE model. We also notice that the polarization effects are

more important in the resonance region (see the DCS at 3, 4, and 5 eV in Figs. 6.2.4(d),

6.2.4(e), and 6.2.4(f) respectively), where the structure in the DCS reflects the d-wave

dominance. This is expected since polarization interaction influences the shape-resonance

region considerably. In general, the agreement with experimental data is reasonable. The

dip at about 550 observed at 1.8 and 2.15 eV by Tanaka et al. is shifted in our results

towards lower angle by about 100 difference. The second dip occuring in our DCS around

1300 at 1.8 and 2.15 eV, seems to be shifted in the same fashion as the lower angle dip
with respect to experimental data (however, the measured values are not available above

1300 angle).

At somewhat higher energies (E > 3 eV), the two dips in the DCS are still visible, while
such a structure in the measured angular functions is quite weak. It may be interesting

to compare our DCS with another set of absolute experimental data (not available right

now). The present predicted DCS values may be quite useful for normalizing purpose in

future measurements. No other theoretical calculations are available on the DCS for the

e-SiH 4 collisions in this energy range. We have provide our ESEP DCS values in tabular

form in Tables 6.2.1 and 6.2.2.
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The integral cross sections (total, at; momentum transfer, a,,,; viscosity, a,, and

energy-loss, al ) are shown in Figs. 6.2.5-.7 in the whole energy region considered here.

First we discuss our low energy (below 1 eV) integral and momentum transfer cross sections

shown in Figs. 6.2.5(a) and 6 (see the inset) respectively. Our value of the cross section

near the RT minimum is about 2.8 x 10- 16 cm 2 for the at and 0.4 x 10- 16 cm 2 for the am.

The swarm data of Kurachi and Nakamura [43] gives a minimum value of about 1.1 x 10- 16

cm 2 in their a,, curve, while Hayashi [44] estimates this minimum value to be 0.5 x 10- 16

cm 2 . Finally, we can conclude from Figs. 6.2.5(a) and 6 that the agreement between

present theory (ESEP model) and experimental results is rather encouraging keeping in

mind that this low energy region is quite difficult to study both in theory and experiment.

Next we show our at and a, values in the 1-20 eV region in Figs. 6.2.5(b) and 6

respectively. The experimental data are taken from Mori et al. [40] and Wan et al. [37].

There is significant discrepancy between the two sets of measured values. Our present

ESEP curve seems to be in fair agreement with recent measurements of Wan et al. The

position of the shape resonance in ESEP theory (around 3.75 eV) and experiment (around

3.1 eV) differs about 20%, while the magnitude of the cross sections in this energy region

also has significant discrepancy; for example, the theoretical (ESEP) peak value of the at

is about 20% higher than the measured value of Wan et al.. A good agreement above 5

eV between the ESE curve ArA experimental points (crosses) is definitely fortuitous. Note

that the inclusion of polarization effects shifts the shape resonance position from about 6.5

eV to about 3.75 eV and increases its magnitude by about 45%. Thus, the importance of

polarization interaction in this energy region can not be overlooked.

In Fig. 6.2.6, we have plotted our Urn cross sections at all energies considered here.

The swarm points are taken from Kurachi and Nakamura [43] and Ohmori et al. [42].

We see significant discrepancy bewteen theory and experiment; however, there seems to

be agreement in the general trend of the cross sections as a function of impact energy.

In the resonance energy region, our calculations are much higher than the swarm data.

The accuracy of the swarm analysis above 1 eV may be questionable. We also realize

that a better polarization potential may be required in the present energy region. The

momentum transfer cross sections are dominated by large angle scattering, therefore, there

may be other reasons too for the observed discrepancy between present theory and swarm

results. Finally, Fig. 6.2.7 illustrates the a, values along with energy-loss cross sections.

The dominance of the 3-4 eV feature is seen in these curves too (Fig. 6.2.7).
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6.2.2 Rotationally Elastic and Inelastic Cross Sections

At very low energies, the energy loss of the incoming projectile because of rotational

channel, is a very important mechanism in e--molecule collisions. It is now possible to

measure indirectly the rotational excitation cross sections for the electron-molecule system

(Mfiller et al. [52]). With this possibility in mind, we discuss our rotationally elastic and

inelastic cross sections. First, we present our rotationally elastic and inelastic differential

cross sections in Figs. 6.2.8 (a), (b), (c), (d), (e), and (f) at 0.5, 3, 5, 10, 15, and 20 eV

respectively. As expected, the elastic 0 --* 0 channel dominates all other inelastic processes

at all angles except at those angles where a deep minimum occurs in the 0 --+ 0 DCS. Also

shown in these figures are the energy-loss DCS (crosses) summed over all final rotational

states. From qualitative point of view, the general shape of rotationally inelastic DCS

for the e-SiH 4 system is quite similar to the corresponding CH 4 curves (see McNaughten

et al. [3]). The 0 -- 4 transition depends weakly on the scattering angle, while the

0 -- 3 one has considerable angular dependence. The 0 -* 6 cross sections are generally

smaller; however, as the energy is increased, they become larger than the other transitions

at certain scattering angles. The total energy-loss DCS are almost flat with respect to

angular variation. It is also clear from these figures that a spherical approximation may

not be an appropriate model for the total DCS in this energy range. We do not have any

other data with which to compare these results of Figs. 6.2.8 (a)-6.2,8 (f).

We will see an effect of polarization potential on the rotational excitation process.

Symmetry of the polarization term (there exists only the spherical, e = 0, term) for the

Td point group, the first Born approximation (FBA) will give zero cross section from the

polarization potential term only. In the present calculation, we, however, see a substantial

difference in the DCS with and without polarisation effects. In Figs. 6.2.9 and .10, we

have shown a comparison of ESE and ESEP DCS for all three transitions (0 --+ 3, 0 -- 4

and 0 -+ 6) at 5 eV and 10 eV respectively. In general, the ESEP cross sections are higher

than the corresponding ESE values and, in addition, exihibit more features. These figures

(6.2.9 and .10) demonstrate that a polarised target is more efficient to excite its rotational

modes through the angular momentum transfer from the projectile. We will see later the

same comparison for integral cross sections at all energies considered here.

We now discuss the integral values of various rotational excitation cross sections. In

Figs. 6.2.11-.14, we have shown our integral (solid lines) and momentum transfer (dash
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lines) values for all the four cases, i.e., o," atm, or m0 and o ° 6 . As expected, the pure

elastic process has all the main features (RT minimum and the 3-4 eV shape-resonance)

of the total scattering process. The rotational channels are small, but exihibit interesting

features in the energy distribution of their cross sections. For example, the 0 -- 3 curves

in Fig. 6.2.12, have enhancement in the cross sections around 8 eV, while the 3-4 eV

region shows a weak structure (remember there is a 3-4 eV shape resonance here in the

elastic and total cross sections). The 0 -+ 4 cross sections are, however, enhanced in the

3-4 eV region. it is interesting to notice that this structure is produced mainly because

of polarisation effect (see the crosses in Fig. 6.2.13, which represent the ESE at values).

Finally, the 0 -- 6 cross sections (Fig. 6.2.14) are also characterised by an enhancement

around 10 eV. Here also, we see a significant change in the inelastic cross sections when

polarisation effects are included (see the crosses in Fig. 6.2.14). In the inset of Fig. 6.2.14,

we have shown low-energy (below 1 eV) ar° 6 results with and without polarisation effects.

Some strange features in the ESEP curves around 1 eV are seen without any explanation

at this time.

Finally, we want to show our integrated energy-loss cross sections in all the three

(AJ = 3,4,6) transitions with and without polarisation effects. Fig. 6.2.15 depicts the

ESEP o1 (solid line), a 4 (dash line) and a,6 (dotted line) values, while Fig. 6.2.16 shows

the same cross sections in the ESE model. We see clearly that the inclusion of polarisation

effect changes the behaviour of the energy-loss cross sections with respect to the projectile

energy. At higher energies (E > 15 eV), the 0 -* 6 transition dominates over other lower

order rotational excitations. The 0 -- 4 cross sections are always higher than the 0 -+ 3

ones except at lower energies (below 2 eV), where the 0 -+ 3 transition dominates over

all higher excitations. The total energy-loss or the stopping cross sections, shown earlier

in Fig. 6.2.7, are independent of initial J value of rotational state of the target. This

agrees with a general theorem (per Shimamura [9-15]) that the stopping cross sections,

when summed over all final rotational states, are independent of the initial rotational

state of the molecule in a situation where the adiabatic-nuclei-rotation approximation is

valid. We have checked the al values with several initial J values and found that the

above theorem is correct [16]. A detailed picture of the gas temperature dependence on

the collisional parameters is presented in Section 7. Our cross sections for rotationally

elastic and inelastic channels may be useful in extracting experimental DCS from their

energy-broadened peaks Because of rotational excitation.
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6.2.3 Cross Sections below 0.1 eV

We have extended our calculations at further lower energies towards the zero-energy

limit. For example, at 0.001, 0.0025, 0.005, 0.01, 0.025, and 0.05 eV energies the values

of the at(a,) are (in units of 10-16 cm 2 ) 47.82 (46.45), 42.53 (40.4), 37.42 (34.64), 30.88

(27.63), 20.68 (16.63), and 12.83 (8.58) respectively. At 0.01 eV, the 0rn values given by

various swarm studies are 56.0 (Hayashi [44]), 66.0 (Ohmori et al. [42]), and 32.0 (Kurachi

and Nakamura [43]). It is rather frustating to see such a large discrepancy between these

swarm values for the a,, value at this low energy. We plan to use our ESEP or values

in the swarm analysis. The value of scattering length is estimated to be -4.2 au in our

present ESEP calculation.

6.2.4 Polarization Approximations in e-SiH 4 Collisions

It is now a well established fact that in low energy regime, the use of model potentials

for both the exchange and polarization forces is rather misleading because to make theory

and experiment closer, these interactions do compensate for each other. In the situation

where exchange is included exactly, In this sub section, we made a relative comparison

with our SEP(JT) results (previous 6.2 Sections) with another model SEP(CP) calculation.

Here the SEP (JT) model means the use of Jain and Thompson [22] potential along with

our iterative ESE approach, while the SEP (CP) employs correlation-polarization [25]

model.

A comparison of the present nonadjustable and energy-independent JT and CP poten-

tials is given in Fig. 6.2.17. we see that the SEP(JT) model is stronger than the SEP(CP)

one in the 0.5-4 au radial region. In addition, near the origin, the JT potential has the

correct form. It was observed by Jain and Thompson [22] that when the JT approximation
is employed along with the OFEGE model (free-electron-gas exchange along with orthog-

onalization procedure [21]), the position of the RT minimum occurs at much lower energy

(at 0.08 eV compared to the experimental value around 0.25 eV); this indicates that the

JT is a weak potential when employed along with the OFEGE model [22].

Fig. 6.2.18 displays our at values in both the SEP(JT) (solid line) and SEP(CP)

(lower dash curve) models along with the experimental data of Wan et al. [36] (crosses).

This figure also shows our SEE results (multiplied by a factor of three) without polarization
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(upper dash curve). No other close-coupling calculation where exchange is treated exactly

are available below 1 eV. Polarization effects are more crucial below 1 eV than above this

energy. We see from Fig. 6.2.18 that the ESE cross sections without polarization effects

are too large. Fig. 6.2.18 clearly shows that the SEP(JT) curve, predicting a RT structure

around 0.25 eV, is more favourable. Although the measured values of Wan et al. do not

seem to show any RT minimum; however, its existence is clearly visible in their at curve

around the same energy of 0.25 eV (see Fig. 5 of Ref. 37). The existence of the RT

minimum is also confirmed in several swarm type studies by several investigators [42-44].

Fig. 6.2.19 illustrates our am results in both the SEP(JT) and SEP(CP) models along

with swarm data [42-43]. The experimental am cross sections (Fig. 6.2.19) exihibit the RT

minimum around 0.25 eV, while our SEP(JT) (solid line) predicts this minimum around 0.2

eV. The SEP(CP) a,, results (dashed curve in Fig. 6.2.19) do not show any RT effect. In

the a t curves of Fig. 6.2.18, the corresponding positions of the RT minimum in SEP(JT)

and SEP(CP) models occur respectively at 0.16 and 0.25 eV. In general, ar minimum

occurs at lower energy than the corresponding minimum in the at cross sections. Even the

magnitude of am results in the SEP(JT) model agrees very well with the swarm results

(Fig. 6.2.19). On the other hand, the SEP(CP) am are not in agreement even qualitatively

with the measured values.

In Fig.6.2.20, we have shown our at values at 1-15 eV in both the models alongwith

measured data. Again we see that the SEP(JT) model is superior over the SEP(CP)

one. In particular, the position of the shape-resonance in the SEP(JT) case is in better

agreement with the experiment as compared to the SEP(CP) model. The discrepancy

between experimental data and present SEP(JT) calculations suggests that a realistic

polarization potential may be even stronger than the present JT approximation. A full

polarised-orbital type calculation is required in order to test this hypothesis.

The DCS present a more stringent test of any theoretical model when compared

with experiment. The two models, i.e., SEP(JT) and SEP(CP), differs significantly when

compared at the DCS level. Fig. 6.2.21 displays the angular functions at 0.2, 0.5, 1 and 3 eV

in both the models along with experimental data (only at 3 eV). There are no experimental

data at and below 1 eV. The DCS at 0.2 and 0.5 eV in Fig. 6.2.21 present distinct features

in the DCS. At 0.2 eV, the SEP(JT) model dip occurs at 1000 as compared to 750 in the

SEP(CP) case. This difference of 250 in the positions of minima in the DCS at 0.2 eV

reflects the sensitivity of low energy scattering with respect to polarization effects. At 0.5
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eV (Fig. 6.2.21), the difference in the positions of the minima in both the models is about

100. Note that in case of e-CH4 scattering 5 a similar distinction is observed at 0.5 eV

between the SEP(JT) and SEP(CP) models. The experimental DCS at 0.5 eV for e-CH4

scattering agrees with Lhe SE?(JT) ,iodcl. We, therefore, expect that our SEP(JT) curve

(in Fig. 6.2.21 at 0.2 and 0.5) is more realistic and reliable than the corresponding data in
the SEP(CP) model. At 1 eV (Fig. 6.2.21), there is still some difference between the two

models, however, the qualitative features are quite similar. We emphasize here that the

significant discrepancy between the two polarization potentials is to be found below 1 eV.

Let us examine our higher energy DCS where experimental data are available for com-

parison. At 3 eV (Fig. 6.2.21), both the theoretical models predict similar dip structure,
while we see significant difference in the forward and backward directions. We can see

from 3eV DCS that the SEP(JT) potential is stronger than the SEP(CP) one. Both the

models have considerable discrepancy with the experimental DCS [45]. One reason of this

discrepancy may the inadequacy of present polarization models. On the other hand, the

accuracy of measured data is not clear since no other experimental studies are available at

this t me.

Finally, our SEP(JT) model appears to be better than the SEP(CP) one, in particular

in the RT minimum region. This conclusion is consistent with our similar investigation

on the e-CH4 system'. However, this conclusion will further be supported if differential

measurements are available for the e-SiH4 case. There is plenty of room to improve upon

the JT potential by actually carrying out a full polarised-orbital calculation for the e-

SiH 4 system. Our present JT potential is obtained by employing a less accurate Pople
and Schofield method [23] in which all the orbitals are distorted equally. Nevertheless, by

employing a better JT type polarization potential the basic conclusions of this paper will
remain valid. It would be quite interesting if more experiments are performed on the DCS

quantities, particularly below 3 eV.
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TABLE 6.2.1.

Elastic (rotationally summed) cross sections (DCS, at, am and a,) for the

e-SiH 4 system (10 - 16 cm 2 ) in the ESEP model.

Energy(eV)

9 (deg) 0.1 0.2 0.4 0.6 0.8 1.0 1.8 2.15

0 2.67 2.337 2.083 2.009 2.105 2.224 6.121 9.891

5 2.643 2.293 2.025 1.940 2.023 2.133 5.882 9.540

10 2.538 2.167 1.862 1.747 1.793 1.878 5.212 8.551

15 2.382 1.974 1.616 1.460 1.458 1.508 4.236 7.098

20 2.186 1.735 1.323 1.127 1.075 1.088 3.128 5.425

30 1.739 1.215 0.732 0.499 0.394 0.365 1.215 2.409

40 1.314 0.761 0.299 0.117 0.0542 0.0544 0.409 0.895

50 0.972 0.439 0.076 0.0077 0.0566 0.149 0.714 1.012

60 0.720 0.238 0.0049 0.0618 0.232 0.437 1.539 2.005

70 0.536 0.119 0.0124 0.170 0.428 0.722 2.290 3.017

80 0.395 0.0496 0.0544 0.279 0.577 0.916 2.650 3.522

90 0.283 0.0128 0.113 0.372 0.668 0.997 2.544 3.339

100 0.196 0.0005 0.176 0.439 0.694 0.963 2.032 2.547

110 0.132 0.0056 0.231 0.465 0.647 0.818 1.286 1.453

120 0.090 0.0189 0.263 0.443 0.537 0.599 0.594 0.557

130 0.0628 0.0332 0.271 0.385 0.398 0.371 0.264 0.371

140 0.0453 0.0458 0.266 318 0.270 0.198 0.462 1.132

150 0.0333 0.0572 0.258 0.263 0.180 0.103 1.096 2.639

160 0.0251 0.0677 0.255 0.228 0.129 0.071 1.880 4.352

170 0.0202 0.0759 0.257 0.211 0.105 0.067 2.497 5.667

180 0.0185 0.0791 0.258 0.206 0.0978 0.069 2.727 6.155

at 6.564 3.246 3.143 4.289 5.717 7.407 19.75 29.25

am, 2.823 0.921 2.521 4.169 5.478 6.867 17.56 26.74

a, 3.374 1.097 1.330 2.592 4.051 5.657 13.78 18.39

42



Table 6.2.2

Elastic (rotationally summed) cross sections (DCS, at, a. and a,) for the

e-SiH4 system (10-16 cm 2 ) in the ESEP model.

Energy(eV)

9 (deg) 2.65 3.0 4.0 5.0 7.5 10.0 15.0 20.0

0 17.43 22.73 30.01 30.56 32.04 35.81 40.93 38.48

5 16.90 22.09 29.29 29.88 31.27 34.82 39.57 37.08

10 15.37 20.27 27.27 27.96 29.07 32.02 35.76 33.20

15 13.11 17.54 24.20 25.05 25.78 27.88 30.21 27.57

20 10.45 14.29 20.48 21.51 21.89 23.05 23.87 21.23

30 5.37 7.906 12.78 14.10 14.09 13.77 12.35 10.08

40 2.275 3.629 6.795 8.044 8.127 7.284 5.361 3.826

50 1.608 2.146 3.496 4.187 4.367 3.707 2.390 1.578

60 2.498 2.648 2.511 2.365 2.286 1.932 1.316 0.933

70 3.751 3.844 2.878 2.018 1.445 1.233 0.974 0.759

80 4.475 4.646 3.501 2.338 1.428 1.228 1.033 0.857

90 4.242 4.437 3.479 2.453 1.632 1.451 1.186 0.983

100 3.096 3.180 2.498 1.891 1.570 1.504 1.170 0.908

110 1.551 1.480 1.066 0.921 1.225 1.337 0.991 0.680

120 4.724 0.405 0.308 0.413 0.965 1.139 0.783 0.457

130 7.194 1.009 1.367 1.289 1.197 1.079 0.600 0.297

140 2.656 3.731 4.724 3.964 2.107 1.216 0.439 0.192

150 5.885 8.064 9.860 8.075 3.612 1.565 0.346 0.152

160 9.412 12.75 15.40 12.56 5.372 2.087 0.381 0.198

170 12.10 16.32 19.65 16.06 6.826 2.600 0.505 0.297

180 13.09 17.64 21.23 17.37 7.395 2.819 0.574 0.349

Ut 45.89 56.06 64.87 60.08 50.16 45.17 37.94 30.85

a,, 42.81 52.03 55.98 46.46 29.15 20.95 12.84 9.04

a, 24.67 27.36 26.39 22.75 19.23 17.21 13.07 9.85
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Fig. 6.2.1. Eigenphase sums for the e-SiH4 collisions in A, symmetry in the present ESEP (solid curve)

and ESE (crosses) models. The dash curve is the SMEP calculation of Jain and Thompson (1987). For

various notations, see the text.
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Fig. 6.2.2. Eigenphase sums for the e-SiH 4 collision in the T 2 (solid curve) and E (dotted curve)

symmetries by using the present ESEP model. The dash curve represents the SMEP values of Jain and

Thompson (1987) for T2 state.
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Fig. 6 .2.3(a). Partial cross sections at 0-1 eV energy range for the e-Sih 4 system in

A (solid curve) and T2 (dash curve) scattering states. The dotted curve represents the

SMEP calculations of Jan and Thompson (1987) for A1 representation.
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Fig. 6.2.3(b). Same legend as in Fig. 6.2.3(a) but in the 1-20 eV region. The solid and

dash curves marked with crosses (A 1 state) and squares (T2 state) are the corresponding

results of Jain and Thompson (1987). The dotted line is our ESEP calculation for the E

symmetry.
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Fig. 6.2.4(a). Rotationally summed (vibrationally elastic) differential cross sections for the e-SilI 4
collisions at 1.8 eV. Theory; solid curve, present ESEP model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6.2.4(b). Rotationally summed (vibrationally elastic) differential cross sections for the e-Sil,
collisions at 2.15 eV. Theory; solid curve, present ESEP model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6. 2 .4(c). Rotationally summed (vibrationally elastic) differential cross sections for tile e-Sill 4collisions at 2.65 eV. Theory; solid curve, present ESEP model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6.2.4(d). lotationally summned (vibratiowdly elastic) diffeiential cross sections for the e -Sill 4collisions at 3.0 eV. Theory; solid curve, present ESEAI model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6.2.4(c). Rotationally sumnmed (vibrationally elastic) differential cross sections for the e-Sill 4
collisions at 4.0 eV. Theory; solid curve, present ESEP model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6.2.4(f). Rotationally suinined (vibratiouiaily elastic) differential cross sections for the e-Sill 4
collisions at 5.0 eV. Theory; solid curve, present ESEP model; dash curve, present ESE model. Experiment:
crosses, Tanaka et al (1990).
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Fig. 6. 2 .4(h). Rtotationially summijed (vibrationially elastic) differetial cross sectionis for the e Sill4
cllisionis at 7.5 eV. Theory; solid curve, preset ESEP model; dash curve, preset ESE model. Experimet:
crosses, Tanaka et al (1990)

50.0



10~2

15.0 eV

101

1 0 5010 5
Angl (deg

10-1 . . . .
0~ 50105

10

1 01-e\

io2...........................
o~ 50 10 5

1050



10

E 8---------- -- -- -- -- -- ----------

6

0

* 4

(I)

0

u 2

0

0

0 0.2 0.4 0.6 0.81

Energy (eV )

Fig. 6.2.5(a). TIotal integral (rotationally summed, vibrationally elastic) cross section for the e-Sill 4
system iii the 0.1-1 eV energy range. Solid line, present ESEP; dlash line, present ESE (multiplied by a
factor of three). The experimental points (crosses) are taken from Wan et al. (1989).
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Fig. 6.2.5(b). T'otal integral (rotationally sumined, vibrationally elastic) cross section for thle e-Sill 4
systemii in the 1-20 eV energy range. Solid line, preseiit ESEP; clash line, present. ESE (multiplied by a factor
of three), The experimental points (crosses) are taken fromn Wanl el al. (1989) and Sucoka and Mlori (1985)
(squares).
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Fig. 6.2.6. Momentum transfer cross sections for the e-Sill 4 collisions in the present ESEP (solid curve)
and ESE (dash curve) models, In the inset, we have shown more clearly the results al low (below 1 eV)
energies. The experimental points are taken from Kurachi and Nakamura (1989) (squares) and Ohrnori et
al. (1986) (crosses). _________________________________
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Fig. 6.2.7. Viscosity, o¢,, (solid curve) and energy-loss, urg, (dash curvc) cross sections for the e-Sill 4collision in the whole energy (0.2-20 eV) range. Note that t~e energy-loss numbers are multiplied by a factor
of' 100.
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Fig. 6.2.8(a). Rotationally elastic and inelastic differential cross sections for the e-Si114 scattering in the
ESEP model at 0.5 eV. Solid line, 0 -c 0; dash line, 0 3; dotted line, 0 -~ 4; squares, 0 -i6; crosses,
energy-loss (rotationally summed) differential cross sections.
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Fig. 6.2.8(b). Rotationally elastic and inelastic differential cross sections for the e-Si114 scattering in
the ESEP model at 3 eV. Solid line, 0 - 0; dash line, 0 -~ 3; dotted line, 0 --+ 4; squares, 0 -. 6; crosses,
energy-loss (rotationally summed) differential cross sections.
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Fig. 6.2.8(c). Rotationally elastic and inelastic differential cross sections for the e-SiH4 scattering in
the ESEP model at 5 eV. Solid line, 0 -- 0; dash line, 0 -- 3; dotted line, 0 -* 4; squares, 0 - 6; crosses,
energy-loss (rotationally summed) differential cross sections.
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Fig. 6.2.8(d). Rotationally elastic and inelastic differential cross sections for the e-SiH4 scattering in
the ESEP model at 10 eV. Solid line, 0 - 0; dash line, 0 -- 3; dotted line, 0 --+ 4; squares, 0 -~ 6; crosses,
energy-loss (rotationally summed) differential cross sections.
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Fig. 6.2.8(). Rotationally elastic and inelastic differential cross sections for the e-SiH4 scattering in the
ESEP model at 1 eV. Solid line, 0 - 0; dash line, 0 --+ 3; dotted line, 0 -~ 4; squares, 0 - 6; crosses,
energy-loss (rotationally summed) differential cross sections.
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Fig. 6.2.9. Differential cross sections for rotationally inelastic transitions with (solid lines, ESEP model)
and without (dash lines, ESE model) polarisation effect at 5 eV.
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Fig. 6.2.10. Differential cross sections for rotationally inelastic transitions with (solid lines, ESEP model)
and without (dash lines, ESE model) polarisation effect at 10 eV.
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Fig. 6.2.11. ato (solid line) and (dash line) cross sections for the e-SiH4 collisions in the ESEP model.
In the inset, we have shown more clearly the low-energy (below 1 eV) data.
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Fig. 6.2.12. at ° (solid line) and r03 (dash line) cross sections for the e-SiH4 collisions in the ESEP model.
In the inset, we have shown more clearly the low-energy (below 1 eV) data. The crosses are the a0values

in the ESE model.
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Fig. 6.2.13. ao4 (solid line) and o (dash line) cross sections for the e-SiII4 collisions in the ESEP model.in tile inset, we have shown more clearly the low-energy (below 1 eV) data. The crosses are the 0aP values
in the ESE model.
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Fig. 6.2.15. Energy-loss (integral) cross sections for various rotational transitions for the e-SiH4 scatteringin the ESEP model as a function of impact energy. Solid lines, 0 -- 3; dash lines, 0 - 4; dotted lines, 0 -- 6.
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Fig. 6.2.16. Energy-loss (integral) cross sections for various rotational transitions for the e-SiH4 scatteringin the ESE model as a function of impact energy. Solid lines, 0 --+ 3; dash lines, 0 -- 4; dotted lines, 0 - 6.
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Fig. 6.2.17. Nonadjustable polarization potentials for the e-Sitl 4 system in the JT and CP approximations
as a function of radial distance r in atomic units. Note that each potential is multiplied by a factor of V/'.
For netations see the text.

10

8- --- ---- - ---- -------- -
6/

02

I I.o 4--

I---4

0 0.2 0.4 0.6 0.8
Energy ( eV )

Fig. 6.2.18. Total cross sections for tle e-Sill 4 elastic collisions below 1 eV. Theory: solid line, present
SEP(JT) model; dashed line, present SEP(CP) model. The tipper dash curve rel)resents the static-exact-
exchange (SEE) (without polarization). Experimenit: crosses, Wan el al. 23

61



10

W

6

C-)
0 4o

b 2 
*

0 0.2 0.4 0.6 0.81
Energy (eV )

Fig. 6.2.19. Momentum transfer cross sections for the e-SiII 4 system in the present SEP(JT) (solid
curve) and SEP(CP) (dashed curve) models. The swarmn data are takeni from Ref. 29 (crosses) and Ref. 30
(squares).

80

e-SiH 4

60

S xix

to x

I40-0x

'I 0,C

xi
b

20

00

0 5 10 15
Energy (ev )

Fig. 6.2.20. Total cross sections for the e-Sill 4 elastic collisions at 1-15 eV. Theory: solid line, present
SEP(.JT) model; dashed line, present SEP(CP) model. The experimental points are from Ref. 23 (crosses)
and~ RIef. 27 (squares).

62



0.2 eV 0.5 eV

-o - - - - - - - - -

10-1

o 10-1

'I 10-
2

a 50 IOU 150 10 50 100 150

Angle (deg) Angle (deg)

1001

OX X

C.

050 100 150 0 50 100 150

Fig. 6.2.21. Elastic diffecrential cross sections for t1he C-SI114 scatterinlg at 0.2, 0.5, 1 and 3 eV. Theory:
s oid curve, 1preSent SEI'(j]') nwldel ' dashed line, present SElP(Cl) miodel. At 3 eV, the measured values of
IaNiaka 0f al."' are shown by crosses.

63



6.3 Electron-GeH 4 Cross Sections

This is a rather too heavy spherical top molecule for which very recently DCS have

been measured in the range of 2-100 eV [53]. No previous calculation exists for this collision

system. Molecular wave functions and consequently the density and various interaction

potentials were determined using the HONDO and INTERFACE programs (see Section

4.3). This part of the calculation was done at a simpler level than the one described above

for other gases. A spherical approximation [54] was employed under the model exchange

and polarization terms. A more rigorous treatment of this system is under progress;

here our goal is to demonstrate that from the present techniques, it is possible to yield

reliable cross sections even for such a heavy system. Strictly speaking, the following results

correspond to the rotationally elastic channel.

First, in Figs. 6.3.1 (a) we show the electronic charge density for the GeH 4 molecule

while in Fig. 6.3.1(b) the spherical part of static, exchange and polarization interactions

are diplayed. The electronic charge density shown in Fig. 6.3.1(a) compares very well with

previous calculations in the spherical description of GeH 4 molecule.

Figs. 6.3.2(a)-6.3.2(e) show our low energy (at 2, 3, 5, 7.5, and 10 eV) DCS together

with the experimental data [53]. The validity of the spherical model depends on the fact

that the rotational excitation channel is very weak compared to the elastic process. This

is not true below 10 eV, where rotationally inelastic DCS are significant. The importance

of rotationally inelastic channel is increased when strong interference effects make the

elastic DCS become either smaller or bigger at a specific angle for each energy. Hence the

ensuing DCS are characterized by a dip in the angular distribution. We, therefore, expect

some significant discrepancy to appear between our theoretical DCS and the measured ones

below 10 eV whenever the above feature may be present. Another source of approximations

below 10 eV DCS is the treatment of exchange and polarization effects within the present

model. Nevertheless, we see from Figs. 6.3.2(a)-(e) that there is a satisfactory agreement

between theory and observation. However, the spherical model provides at times only a

qualitative picture of the observed data since we see, for example, a very pronounced dip

around 1200 at 2 eV which is instead very shallow in the experimental data.

In Figs. 6.3.2(a)-(e), we have shown all results both on a linear as well as on a

lograthmic scales. The higher angle dip in the DCS is more pronounced on the log scale;

consequently we observe large discrepancy between theory and experiment at such angles.
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This is probably due to the neglect of anisotropic terms in the SCE of tile effective potential.

Further, we see that at lower angles, the experimental DCS are very small as compared

to computed values. As discussed by Boesten and Tanaka [53], the lowest angle DCS are

rather too small in their measurements. It is also interesting to note that the background

scattering is quite strong at 2 eV.

We now display our results at intermediate and high energies where Dur present model

is likely to work markedly better [49]. In Figs. 6.3.2(f)-(i), we show our present DCS at

15, 20, 60 and 100 eV alongwith the measured points of Ref. 53 . We can see from these

figures that there is indeed very good agreement between theory and experiment and that,

in particular, the structure observed in the experimental DCS is clearly reproduced in our

calculations at all energies above 10 eV.

Finally, we have displayed in Fig. 6.3.3 the computed integral and momentum transfer

cross sections. We can see a shape-resonance feature around 5 eV which is caused by

the d-wave component of our potential scattering mechanism. Note that in CH 4 and

SiH4 molecules this enhancement in the total cross section occurs around 7-8 eV and

2- 3 eV respectively. Thus the 5 eV structure seen here in the e-GeH 4 case becomes

quite interesting in comparison with other Td-symmetry targets. Below 1 eV, we have

also evidence of a minimum around 0.2 eV, but such a structure is very sensitive to the

approximations involved in including exchange and polarization effects and therefore we

expect that it will need possible confirmation from more extensive calculations that are

presently planned in our laboratory.

In order to further confirm the 5 eV feature in the e-GeH 4 elastic scattering, we have

plot- d DCS as a function of energy in Fig. 6.3.4. The experimental DCS of Boesten

and Tanaka [53] clearly exihibit this enhancement around 5 eV; this shape resonance

phenomena is also present in our calculations (Fig. 6.3.4). It is still to be seen if measured

total cross sections and more accurate calculations reveal this structure.

It is still interesting to note, however, that the present calculations, which effectively

decouple each contributing partial wave in the spatial region where the potential exists, are

indeed presenting a fairly good description of the scattering process. Since the coherent

sum of angular moxnenta carried out to yield the DCS is a rcsult of dynaiiical ilteifereice

betweeI1 trajectories, we are able to say that the present sphrzcal potential is realistically

tre.atiig s1iCh intei-fereice effects. The lack of angular anisotropy in the chosen intcrac-
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tion prevents us from correctly including, however, the potential coupling which causes

additional interference in the multichannel S-matrix of the full problem [1]. However, it
appears from the present results that, at least above 10 eV, such further effects are rather

negligible and that the heavy GeH 4 target can be considered as being essentially still dur-

ing the interaction (r << << trrot) and is approximately spherical when probed by the

impinging electron. Thus, the possible adiabatic convolution of the scattering amplitude

over rotational eigenstates can be approximately treated via its spherical component only:

i.e., we can write,

tot Zf A
ii

E- (Oijf(QJ;N+l)10.f)

i,$

E (Si E f A,(S)XAm(rN+i)jkf)
if A,m

E(, 1 0os (Q I o
if

- E f00(Q)6if (6.3.1)
i,

where Q is the space-fixed orientation, iN+l is the body-fixed electron-molecule orienta-

tion vector and the Ii) is rotational eigenfunction of the molecule. Because of time scale

considerations, vibrational excitations are even less likely to occur.
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log scales.
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Fig. 6.3.2 (c). Differential cross sections for the e-Gel 4 system at 5 eV in the present SEP model (solid
line). The crosses are the experimental points from Ref. 1. Note that we have shown both the linear and
log scales.
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Fig. 6.3.2 (g). Differential cross sections for the e-Ge114 system at 20 eV in the present SEP model (solid

line). The crosses are the experimental points from Ref. 1. Note that we have shown both tihe linear and

log scales.
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Fig. 6.3.2 (f). Differential cross sections for the e-GeII4 system at 15 eV iii the present SEP model (solid
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log scales.
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6.4 Electron-NH 3 Cross Sections

There are recent measurements on the e-NH 3 total [54-55] and differential [56] cross

sections in the present energy region; however, no ab initio calculation (with exact exchange

plus polarization effects) exists in order to make a proper comparison with the experiment.

The Schwinger multichannel variational (SMV) calculations of Pritchard et al. [57] are

carried out only at the fixed-nuclei static-exchange level; consequently, in the absence of

polarization effects, it may not be proper to compare these SMV results with experimental

cross sections. More recently, Parker et al. [58] have employed complex Kohn variational

principle to study e-NH 3 problem at the ab initio level. The only other fixed-nuclei close-

coupling calculations employing model exchange and polarizations potentials are due to

Jain and Thompson [59] and Gianturco [60].

Encouraged by the success of our present calculations on the CH 4 , SiH14 , and GeH.,

molecules, we have extended our ESEP theory (Section 4) for the e-NH3 case where recent

measured data are available. We are in the process of completing these results by carrying

out a careful checking on the convergence of the final DCS and integral quantities. As is well

known, for a polar molecule, the ANA theory predicts infinite cross section in the forward

direction. Here we restrict ourselves only to the eigenphase sum, partial cross sections,

and momentum transfer cross sections. We also present DCS and integral parameters, but

these numbers can be considered only prelimenary at this time. In Tables 6.4.1, 6.4.2,

and 6.4.3, we have provided our results on the eigenphase sums, partial cross section

and momentum transfer parameters in the ESE (without polarization) and ESEP (with

polarization) models. These tables show that the polarization effects introduce significant

changes in the collisional quantities.

First in Fig. 6.4.1, we compare the ESE (dashed curve) and ESEP (solid lines)

eigenphase sums for all the three symmetries (Al, A2 , and E). In the next figure 6.4.2,

we have displayed similar data on the partial cross sections. As mentioned above, the

effects of polarization force is significant at all energies shown in these figures. Next in Fig.

6.4.3, we illustrated our atand amcross sections along with experimental data. We see a

qualitative agreement between our theory and measurements. The enhancement in both

the integral and momentum transfer cross section around 10 eV is faithfully reproduced

by our calculations.

Finally, we show our prellininary angular functions in Fig. 6.4.4 at 8.5 and 15 eV
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along with measured points. We have shown our theoretical results at all angles. Also

shown in this figure are the static-exchange (without polarization) SMV calculations of

McKoy and coworkers [57]. It is clear that theoretical curves are very close with relative

measurements of Ref. 56. We have used the same normalization criterion as in Ref. 57.

A more careful analysis of our DCS in terms of convergence and aslo the normalization of

experimental data with respect to our results will make this comparison (Fig. 6.4.4) even

better. Also our calculated values in Fig. 6.4.4 are taken at 8.0 eV rather than at 8.5 eV as

is the case with measured [56] and calulated [57] values. Unfortunately, the experimental

DCS on the low energy e-NH3 scattering are not available properly. The measured values

of Shyn [56] are only preliminary and definitive conclusion about the agreement between

theory and experiment is very hard to draw at this moment.

We are considering another possiblity of testing convergence of our DCS with respect

to the use of Born theory in closure formulae. Recently, Parker et al. [58] have suggested

the use of closure formula at the level of scattering amplitude rather than at the cross

section level.
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Table 6.4.1

Eigenphase sums (in radians) for the e-NIt 3 elastic collisions in the ESE and

ESEP models.

Energy ESE ESEP ESE ESEP ESE ESEP

(A') A 1  A 1  A 2  A2 E, E

0.01 0.1791 0.4367 0.0049 0.005 0.0461 0.0495

0.025 0.0832 0.3964 0.0061 0.0065 0.0484 0.0569

0.05 -0.00857 0.3535 0.00745 0.0084 0.0495 0.0663

0._ 75 -0.0718 0.3245 0.0085 0.0099 0.0491 0.0739

0.10 -0.0671 0.302 0.0094 0.0113 0.0477 0.0803

0.25 -- 0.2407 0.2164 0.0132 0.0181 0.0297 0.1054

0.50 -0.4105 0.1293 0.017 0.0271 -0.0143 0.1247

0.75 -0.5299 0.0611 0.019 0.0343 -0.0619 0.1347

1.0 -0.6274 -0.00047 0.0194 0.0399 -0.108 0.1427

2.0 -0.9284 -0.2081 0.0089 0.0509 -0.2521 0.1942

3.0 -1.1656 -0.3666 -0.0088 0.0547 -0.3352 0.2930

4.0 -1.3569 -0.484 -0.0228 0.0627 -0.376 0.4335

).0 -1.511 -0.569 -0.0309 0.0762 -0.3829 0.6071

6.0 -1.6359 -0.629 -0.0349 0.0933 -0.3543 0.8079

.O -1.819 -0.6929 -0.035 0.134 -0.2024 1.228

10.0 -1.932 -0.705 -0.023 0.185 0.001 1.578

15.0 -2.0545 -0.6535 0.0367 0.329 0.4134 2.1325

20.0 -2.0938 -0.606 0.0999 0.462 0.6568 2.441



Table 6.4.2

Partial cross sections (in units of 10-16 cm 2 ) for the e-NH 3 elastic collisions in

the ESE and ESEP models.

Energy ESE ESEP ESE ESEP ESE ESEP

(eV) A 1  A, A 2  A 2  E, EX

0.01 2043.3 2792.0 83.33 83.32 709.323 710.6

0.025 737.01 1028.4 33.34 33.35 283.59 284.58

0.05 342.89 483.02 16.68 16.69 141.62 142.93

0.075 220.61 308.14 11.12 11.13 94.25 95.56

0.10 167.28 223.1 8.35 8.36 70.55 71.84

0.25 65.38 78.0 3.35 3.36 27.867 28.968

0.50 36.67 34.42 1.68 1.70 13.81 14.52

0.75 24.70 21.05 1.12 1.14 9.29 9.71

1.00 19.79 14.83 0.841 0.865 7.13 7.32

2.00 12.525 6.71 0.42 0.44 4.087 3.932

3.00 10.288 5.02 0.28 0.30 3.262 3.273

4.00 9.186 4.63 0.218 0.240 3.082 3.605

5.00 8.46 4.589 0.181 0.212 3.167 4.366

6.00 7.90 4.657 0.157 0.20 3.375 5.235

8.00 7.056 4.874 0.125 0.193 3.978 6.463

10.00 6.42 5.05 0.107 0.198 4.505 6.723

15.00 5.276 5.07 0.095 0.242 4.700 5.982

20.0 4.473 4.717 0.102 0.289 4.210 5.106
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Table 6.4.3.

Total and momentum transfer cross sections (10-16 cm 2 ) for electron scattering

with NH 3 molecules.

Energy (eV) Theory (at) Expt.' (at) Expt.2 (ar) Theory (am) Expt. 3 (a,,)

0.01

0.025 1566.3 - - 791.42

0.050 768.54 - - 371.91

0.075 503.25 - - 233.67

0.10 371.15 - - 167.70

0.25 138.68 - - 56.71

0.50 65.24 - - 24.67

0.75 41.57 - - 14.88 -

1.00 30.29 14.7±1.3 10.4 10.0

2.00 14.98 10.9±0.9 11.0 4.93 5.1

3.00 11.84 11.2±0.9* 11.0 4.94 5.1

4.00 12.04 12.0±1.0 12.5 6.70 6.25

5.00 13.48 14.5±1.2 15.75 8.96 8.2

6.00 15.24 15.5±1.3 18.0 11.11 9.1

8.00 17.85 17.1±1.4 22.0 13.78 9.8

10.0 18.52 17.5±1.5 23.5 14.06 10.2

15.0 17.93 16.0±1.5 20.0 12.12

20.0 15.09 14.2±1.2 17.25 9.08

' Ref. 54

'Rcf. 55

:3Rf. 57

a at 3.1 (V
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6.5 Electron-H 20 Cross Sections

We are in the process of determining final converged cross sections (DCS, at, Urn) for

elastic and rotationally inelastic processes. The H20 molecule is polar molecule with above

critical value of the dipole moment. Thus the dipole moment of water molecule is capable

of supporting infinite number of bound states of the incoming electron. We are modifying

our existing codes in order to include full contribution of the higher partial waves which is

important in the forward angle scattering. There are several recent measurements on the

t[61-64], am[65] and the DCS [66-68] parameters for the e-H 2 0 system. We will make a

comparison between our theory and these measured data. In addition, SMV results [69]

and other calculations [70] will also be included in the comparison.

Here, we show the values of eigenphase sums (Table 6.5.1) and partial cross sections

(Table 6.5.2) for all the four symmetries A1 , A2 , B1 , and B2. In these tables, we have

included our calculations with and without polarization effects. Again we see considerable

effect of polarization force in the e-H 2 0 scattering. In this case, there is no resonance or

RT effects. This is mainly due to the dominance of dipole scattering.
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Table 6.5.1:

Eigenphase sums for e-H 20 scattering in the ESE and ESEP models

E A1  A2  B, B2

(eV) ESE ESEP ESE ESEP ESE ESEP ESE ESEP

0.5 -0.463 -0.332 -0.0024 0.0129 -0.167 -0.1296 -0.023 0.066

1.0 -0.713 -0.544 -0.0362 -0.0114 -0.326 -0.272 -0.070 -0.0091

2.0 -1.051 -0.853 -0.125 -0.090 -0.563 -0.488 -0.209 -0.127

3.0 -1.306 -1.088 -0.196 -0.155 -0.725 -0.636 -0.299 -0.210

4.0 -1.483 -1.248 -0.236 -0.190 -0.845 -0.743 -0.358 -0.270

5.0 -1.600 -1.350 -0.254 -0.202 -0.931 -0.818 -0.383 -0.303

6.0 -1.676 -1.409 -0.258 -0.199 -0.986 -0.863 -0.375 -0.306

7.5 -1.732 -1.441 -0.244 -0.177 -1.03 -0.889 -0.318 -0.273

10.0 -1.752 -1.426 -0.205 -0.121 -1.06 -0.897 -0.179 -0.1869

15.0 -1.747 -1.383 -0.139 -0.033 -1.09 -0.893 0.072 -0.0179

Table 6.5.2:

Partial Cross Sections for e-H 2 0 scattering in the ESE and ESEP models

E A1  A2  B1  B2

(eV) ESE ESEP ESE ESEP ESE ESEP ESE ESEP

0.5 48.40 45.30 3.26 3.28 16.14 15.74 15.03 15.2

1.0 27.28 24.51 1.66 1.64 9.79 9.25 7.74 7.62

2.0 16.62 13.94 1.05 0.938 6.61 6.02 4.33 4.10

3.0 12.38 10.72 0.787 0.709 5.32 4.72 3.29 3.03

4.0 10.68 9.31 0.636 0.564 4.67 4.10 2.91 2.61

5.0 9.66 7.50 0.531 0.471 4.28 3.74 2.78 2.43

6.0 8.93 7.998 0.453 0.402 3.97 3.47 2.74 2.33

7.5 7.63 6.550 0.362 0.322 3.56 3.11 2.78 2.27

10.0 7.31 6.107 0.270 0.248 3.08 2.72 3.08 2.37

15.0 6.28 5.485 0.208 0.215 2.55 2.33 3.46 2.66
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7. EFFECT OF GAS TEMPERATURE ON THE CROSS SECTION

At a given temperature T, a typical polyatomic molecule has many rotational states

populated. From theoretical point of view, it is easier to calculate rotational excitation

cross sections from the ground state (J = 0) to any final J value of a given molecular

system. In many practical cases, the transfer of rotational angular monentum Jt (I J - J I<-

Jt < J+ J') in any scattering event involves very high values of J and J'. For spherical top

molecules, the differential cross sections (DCS) for rotational excitation from any initial

state J to a final state J' can be evaluated as follows [9-15],

da 2J+AJ (2J + 1 + 2AJ) k' dod-'(J --+ X; k 1')= Y- (2J + 1)(2Jt + 1) k, T 2(0O---+ Jt; V,0), (7.1)

where k' and kt are kinematic factors of the wavevector of projectile in the J -* J' and

0 -- J cases respectively and J = J + AJ. In the summation over Jt in Eq. (7.1), usually

only a few terms are needed with small Jt values. For example, in the present case of CH 4

and Sill4 molecules, the Jt = 0, 3, 4, and 6 values are sufficient (note that the Jt = 1,2 and

5 values are not allowed for molecules having Td point symmetry group). Thus, given a set

of cross sections for a few 0 --* Jt transitions only, Eq. (7.1) can easily be used to determine

rotational excitation quantities from any initial J value including very high ones. This is

essential when one needs to average the cross section over the distribution of rotational

states at a given temperature. Eq. (7.1) is valid under the adiabatic-nuclear-rotation

(ANR) approximation, i.e., the incident and scattered electron is moving much faster than

the rotational motion of the molecule. In circumstances where the ANR approximation

fails (for example, near the threshold energy or a sharp shape resonance, or for a polar

molecule), Eq. (7.1) may not be valid. In the present case of spherical top molecules and

the energy range of 0.5-20 eV, the ANR approximation is valid and we use Eq. (7.1) to

generate various cross sections with different initial J values for all possible final J' values

allowed by the Jt selection rule.

If one neglects the kinematic factors (k' and ki) from Eq. (7.1), the cross sections

between the rotational states J and J' = J ± AJ can further be written as [12-13],

da 2AJ
(J --* J ± AJ) = (1 )A(IAJI), (7.2)

dQ 2J 1(72
with

2J±,.AJ da
A(IAJI) = Z -(0--* Jt)/(2J + 1). (7.3)

J,=IAJI
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where we assume that 2J - jAJJ is larger than any Jt that contributes appreciably to

the sum in Eq. (7.3). In other words, we assume that da/dQ(O -* Jt) is almost zero for

Jt > 2J - JAJI, so that the upper limit of the summation in Eq. (7.3) is equivalent to

infinity. Thus, we can easily write JAJI in the argument of A and not J or AJ. The

Eqs. (7.2)-(7.3) above are exact under the adiabatic-rotation approximation. The values

of da/dQ for various IAJI will be given and discussed later for both the molecules.

The da/dQ (0 -+ Jt) can be expanded as,

d" -i t E AL(0 -- Jt)PL(cos 0), (7.4)
L

where PL(cos 0) are Legendre polynomials and trc expansion AL coefficients are given by

[27, see Section 4.4],

.4L( r) (-1 )m
-L( it) BC(flL[;000)C(t'Le';OOO)(-l)1)',V"(et'g{'; JtL) r' 'mf'ml ' t  ''

fetet

(7.5)

The M matrix is defined as,

=I~t (-1)6t thee g J f';rnm'A1)bP',,T'"Thu , (7.6)

nrn' hh'pp

ad B3 - [(2k + 1)(2e' + 1)(2 1)(2 ) - (-i -
2 The C-coefficients are the usual

Clebsch-Gordan coefiecients and the T-matrix is defined in terms of scattering S matrix

as T = (S- 1) where S = (1 + iK)/(1 - iK) - 1 is written in terms of reaction K matrix for

Cach symmetry (pp). In Eqs. (7.5)-(7.6), W(abcd;ef) is the well known Racah coefficient

arid the b"' coefficients are expansion terms in the definition of symmetry adapted basis

functions in terms of real spherical harmonics [1]. For the case of total and momentum

transfer cross sections, Eq. (7.5) can be greatly simplified to give simple expressions [see

Eqs. 4.4.9--4.4.10].

Here we have investigated the behaviour of various scattering p)aramieters on the ini-

tial rotational state J mid temperature of the gas. This is important because in rotational

(qililbrium at room temperature or higher, the gas niolecules occupy many different ro-

tational states. A typical Maxwellian rotational state distribution for the CH 4 and SiH 4

gases is shown in Fig. 7.1 at 300 and 500 K. We see from Fig. 7.1 that for CH 4 the

most probable initial states at 300 K are distributed around J = 6 (and J = 8 at 500 K),
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while for the heavier SiH 4 case, the initial state has an even higher value of J = 8 (and

J = 11 at 500 K). In addition, we also study the dependence of the rotationally elastic

and inelastic processes on the initial state J. Very recently, Miiller et al. [52] have mea-

sured state-to-state rotational excitation cross sections from the broadened (because of

rotational process) energy-loss peaks by using an analysis of Shimamura [14]. Shimamura

[9--15] has described in a series of papers the various aspects of rotational transitions in

molecules and established several important theorems (see later) regarding the dependence

of collisional parameters on the initial rotational state and the gas temperature T.

The basic scattering parameter is the differential cross section as a function of scatter-

ing angle (0) and energy (k 2 ) for any rotational transition J --+ J-+AJ. A large set of cross

sections can be obtained for state-to-state rotational transitions and rotationally summed

quantities; however, it would be meaningful to derive compact information from this huge

amount of cross section data. For example, the differential moments (the dependence on

0 and k2 is suppressed),

dS da
d--(P; J)= -(Ej, - Ej) ' -(J -- J'), (7.7)

J,

and the integral moments S(pL; J) characterize the behaviour of the electron-molecule

system. The zeroth-order integral moment with p = 0, S(0; J), is the usual integral (or

tc al) cross section (summed at(J) or state-to-state at(J -+ J')), while first-order integral

mnoment, S( 1; J), is the energy -loss or stopping cross section. Another useful parameter is

the momentum transfer cross section (summed a,, (J) or state-to-state Ur,,(J -* J')) which

is obtained by integrating the differential cross section (Eq. 7.1) with the weighted factor

of (1 - cos9). In Eq. (7.7), Ej = BJ(J + 1) is rotational energy of the molecule in Jth

level and B is the molecular rotational constant. For CH 4 and Sill4 molecules the values

of B are taken to be 65.11 meV and 35 .5 meV respectively. Higher order moments (p > 2)

in Eq. 7.7 provide information on statistical fluctuations of the energy-loss spectrum from

its mean value.

In practice, all observable physical quantities are connected with these moments av-

eraged over the rotational distribution function N( J; T), namely
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where N(J; T) = g(J)e- EJI / ' T is the Maxwellian distribution function, K is the Boltzmann

constant and g(J) = (2J + 1)2 is the statistical weight of the Jth state of a spherical top.

In the definition of N(J; T), we have neglected the effect of nuclear spins.

Another interesting aspect is the relationship between rotational excitation and deex-

citation processes. Shimamura [12-13] has derived partial sum rules for the J - J ± AJ

rotational transitions. From Eqs. (7.2)-(7.3), we see that (denoting the cross section

quantity in general by a)

a(J -J + AJ) = 2J + 1 + 2AJ
a(J- J - J) 2J + 1 - 2AJ'

and the sum a(J --+ J + AJ) + a(J --* J - AJ) is a constant equal to 2A(IAJI). How-

ever, if we include the effects of kinematic factors, particularly at the lower bound of the

present energy region, Eq. (7.9) may be true only approximately. Shimamura [12-13] has

also discussed the relationship between weighted rotational excitation and de-excitation

quantities, i.e., AE+a(J -- J + AJ) and AE-a(J -- J - AJ). Here AE' are transition

energies given by BAJ[±(2J + 1) + AJ]. We will also discuss these partial sum rules and

ratios for the CH 4 and Sill4 cross sections.

We have therefore carried out a systemetic study on the dependence of differential

cross section (Eq. 7.1) and moments (Eq. 7.7) on the initial rotational state J and of

the averaged quantities (using Eq. 7.8) on the gas temperature T. We will compare our

predictions with the theorems as discussed by Shimamura [9-15] regarding the J or T de-

pendence of various physical quantities. All our results are presented only for the spherical

top molecules (CH 4 and Sill4 ). The [asic scattering quantity, i.e., dojdQ(O -+ J,; k2 ,0),

is taken from our recent ab initio calculations [see Sections 6.1 and 6.2] on the e-CH 4 and

SiH 4 systems. These calculations treat electron-exchange interaction exactly via iterative

procedine and the charge correlation and polarization effects are included approximately in

a pararneter--free I)erturbative approach (see Section 4.5). The final results on rotationally

summed differential, integral, and momentun transfer cross sections (see Sections) coin-

pared very well with experimental data. In p)articular, at very low energies (below 1 eV),

where various correlation teris (such as the polarization and exchange) play rather cru-

cial role, our calculations [4- 5] reproduced all salient features in the differential as well as

integral cross sections (for examtple, the Rainsaner Townsend xuiiiiiiuuu In the total cr(ss

section) both in quality and quantity. Therefore, in the following analysis, we assunme that

the input data on the state- to- state differenitial cross sections are of re'liable qualitv.
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Our previous calculations [4] oil the e-CH 4 state-to-state rotational transitions were

in qualitative agreement with the experimentally extracted values of Muiller et al. [52].

There were, however, some differences between theory and experiment for these rotationally

inelastic channels where cross sections are very small compared to the pure elastic case.

For example, for the 0 -- 3 transition, calculated values show zero cross section in the

forward direction, while experimental points exihibit no such behaviour. This is one of the

purposes of this article, i.e., to resolve this discrepancy between theory and experiment.

7.1 Sum Rules for Rotationally Summed Parameters

It has been shown by several authors (see Ref. 15 for details) that the zeroth-order mo-

ments (Eq. 7.7), differential or integral, are independent of the initial rotational state J and

hence on the gas temperature T. It is also shown for spherical top molecules [12-13] that the

first-order moment is also independent on J and T, i.e., S(0; J) = S(0; 0); S(1; J) = S(1; 0).

In addition, the second and third order moments are shown to depend linearly on the en-

ergy Ej of the initial state [14]. In Table 7.1, we have given our actual calculations on the

state-to-state rotational excitation cross sections for the e-CH 4 system at 5 eV for the

DCS (at few angles only), a,(J -+ J') and om(J + J'). Only the J = 0,1,2 and 7 cases

are shown in Table 7.1. In Table 7.2, the state--to-state moments S(1; JJ'), S(2: JJ'), and

S(3; JJ') are given at two energies of 0.2 and 5 eV. Here also we have shown only the

J = 0, 1,2, and 7 cases. In Table 7.2, we have also given the summed (over ') quantities

(this sum includes Jt = 6 transition also) for all the moments up to P = 3. We can clearly

see from these tables for CH 4 molecule that the differential, integral, and various moments

are independent of J and hence on the gas temperature T. The higher order moments

depend very weakly on the initial J value (see Table 7.2).

A similar situation exists for the case of SiH 4 molecule (no. shown). In all these

results (Tables 7.1 and 7.2) the initial and final wave vectors (k and P') are considered to

be different. Although, in Tables 7.1 and 7.2 we have shown our results up to J = 2 and

J = 7 only, the J > 3 results exiliibit exactly the same .1 -independent behaviour for all the

moments mentioned above; we cheked our data up to J = 100 value with maximum value

of Jt to be 6. Thus, the moments < S(p) > (Eq. 7.8) for p up to 3 are nearly independent

of rotational temperature. The higher order moments are very small; nevertheless, a weak

djwlxdence on J (as discussed by Shlimammiira [14]) is visible here in our calculations (Table

7.2). In addition, for both the targets, CH 4 and SiHll, the values of moments with / > 4
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in the present energy region are rather too small to be of any physical significanlce.

If the effects of kinematic factor are taken into account by assuming the expansion

[12-14],
V 1 ( AE ) (7.1.1)

and by neglecting higher order terms, then Shimamura [14] has shown that for p = 1 and

2,

S(P; J) = SG0)(1 - 2Ej- 3"- ) , (7.1.2)

Tables 7.1 and 7.2 show that even when kinematic effcts are taken into account, all the

moments up to p = 3 are very weakly dependent on the J value. The magnitude of these

higher order moments is too small to show any appreciable dependence as defined in Eqs.

(7.1.1)-(7.1.2). Finally, in Table 7.3, we have provided our averaged moments, (S())

as a function of electron energy for both the molecules. All these moments preserve the

shape-resonance behaviour around 7.5-10 eV (for the CH 4 molecule) and 3-4 eV (for the

SiH 4 molecule) energy region.

7.2 Partial Sum Rules

Our results on the partial sum rules and the asymmetry between the J -* J ± AJ

rotational transitions are as follows. Shimamura [12-13] has discussed these rules for

spherical tops in general. In Table 7.3 (for the CH4 molecule) we find that the partial-sum

rule [12-13] for any physical quantity, say a,

a(J --* J + A J) + a(J --* J - AJ) = 2A(IAJI), (7.2.1)

is approximately true. Here A(IAJI) can be differential, integral, and momentum transfer

cross sections or the moments (Eq. 7.2-7.3). The values of A(IAJI) for the case of e-CH4

collisions at 0.5 and 5 eV axe given in Table 7.4 for 14NJI = 1,2,3, and 4. As assumed

in Eqs. (7.2)-(7.3), the da/dQ(JAJI) are almost a constant for any initial J value. The

difference between A(IAJI) with different initial J values is always less than 5% (at both

0.5 and 5 eV energies). There are only few cases (see Table 7.4) when A(IAJI) depends

strongly on the initial and final J values; for example, the AJI = 3 case when J = 3 for

both the energies. In addition, the validity of Eqs. (7.2)-(7.3) is less clear for 0.5 eV. As

inentioned earlier, Eqs. (7.2)-(7.3) are valid under the adiabatic- rotation approximation,

which may may break down at very low energies below 1 eV energy. This will affect the
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analysis of experimental data to extract state-to-state DCS from the observed broadened

peaks [13] (see later). The IAJI = 4 transition at 0.5 eV also depends significantly on

the initial J value. This is not surprising since at this rather low energy the inclusion of

rotational Hamiltonian in the scattering calculation is important.

The individual excitation and de-excitation DCS at 900 for the e-CH4 are plotted in

Fig. 7.2 for the AJ = ±3 case and in Fig. 7.3 for the AJ = ±4 case. From Fig. 7.2, we

see that in the high-J region, the ratio is independent of initial J value, i.e., the excitation

and de-excitation intensities are equal. The excitation and de-excitation cross sections

approach each from upper and lower ends respectively; however, the two curves are not

symmetrical with respect to the mean values. The DCS plotted in Fig. 7.2 are very close

(within 5%) to the analytic formula given in Eq. (7.9) because Eqs. (7.2) and (7.3) are

approximately true. A similar bchaviour is noticed for the AJ = ±4 case in Fig. 7.3.

Curves in Figs. 7.2 and 7.3 give us idea of the high-J limit of the rotational excitation

process. A similar situation exists for the case of e-SiH4 scattering (not shown).

7.3 Rotationally Elastic and Inelastic Cross Sections

It is remarkable that experimentalists have been successful in obtaining absolute state-

to-state rotational cross sections for the e-CH4 system [52] at low impact energies. In order

to extract these cross sections from their broadened energy-loss peaks, Miiller et al. [52]

used a theoretical analysis given by Shimamura [9] (based on the Eqs. 7.2-7.3) for the ro-

tational excitation of spherical top molecules, which couples the line strength intensities of

transitions from different initial rotational level. Like our assumption (see the introduction

section), Miller et al. [521 have also assumed that the transfer of larger angular momenta

(Jt > 6) is highly unlikely. Our earlier calculations [4] on the rotational transitions in

CH4 molecule by electron impact compared satisfactorily with the experimental data of

Miller et al.. However, there were some qualitative differences between theoretical and

experimental DCS in the forward scattering particularly for the 0 -* 3 transition; all theo-

retical calculations on the 0 --* 3 transition predict a zero value of the DCS at 00 angle [see

Ref. 4], while the general trend of experimental DCS does not agree with the theoretical

shape in this small angle scattering region. Even at higher angles, there are significant

discrepancy in shape and magnitude of the DCS between theory and the measurement.

For example, almost all theoretical 0 -- 3 DCS predict a dip around 1200 angle, while

experimental values are rather flat in this angular region. This is one of the purposes of

92



this section, i.e., to investigate these state-to-state differential and integral cross sections

with respect to their direct comparison with experimental data and the effect of rotational

averaging for a particular AJ transition.

Miller et al. [52] have presented their measurements at 0.5, 5, 7.5, and 10 eV energies

for the case of 0 --+ 0, 0 --* 3, and 0 ---* 4 state-to-state rotational transitions in CH 4

molecule by electron impact. They employed Eqs. (7.2)-(7.3) to extract the absolute DCS

as mentioned above. We have seen in the previous section that the neglect of kinematic

factors in Eqs. (7.2)-(7.3) leads to significant error in the validity of these equations

particularly at 0.5 eV. It is not clear that how much difference it will make in the final

values of experimental DCS. In the following, we will discuss our results only at 7.5 eV

and the corresponding discussion on other energies is almost same.

First we show our e-CH4 DCS for both the 0 -- 3 (Fig. 7.4) and 0 --- 4 (Fig.

7.5) transitions with (solid curve) and without (dash curve) rotational averaging. The

rotationally averaged curves (solid curve in Figs. 7.4-7.5) depend simply on the A J=3 or

4 value. The experimental points [52] are also depicted for comparison. We immediately

notice from Fig. 7.4 that the averaged (at 300 K) DCS improve drastically in the small

angular region where the unaveraged DCS vanish at the zero angle. The overall shape

of the DCS changes significantly when rotational averaging is performed. The backward

scattering region is also affected with rotational averaging (see Fig. 7.4). In general,

the averaged DCS are smaller and exihibit less structure in the DCS as compared with

the unaveraged DCS. The 0 -* 4 transition is also reduced significaltly when rotational

averaging is performed (Fig. 7.5). The pure elastic (0 -* 0) DCS (not shown) do not

show any visible effect with and without rotational averaging. It may be appropriate to

call our averaged DCS as do/dQ(IAJI) rather than from J = 0 to J' = 3 or 4. It may be

questionable whether one should compare these IAJI = 3 or 4 DCS with the data of Miiller

et al. [52]. In addition, because of a very weak broadening appearing in the energy-loss

spectrum, large systematic errors are possible at lower angles in the data of Muiller et al.

[521.

In Figs. 7.6 and .7, we have displayed similar DCS for the two transitions (0 -, 3

and 0 -+ 4) with and without rotational averaging for the e-SiH4 case. Here also the

qualitative picture is same as discussed above for the CH 4 molecule. The averaged DCS

depict less variation in the cross section as function of scattcring angle (see Fig. 7.6). The

o - 4 cross sections are reduced by almost a factor of four when averaging is taken into
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account. No experimental data are available to compare our calculations shown in Figs.

7.6 and 7.7.

In Fig. 7.8, we have shown state-to-state DCS for the AJ = +3 transition at several

initial J values. It is clear that only the J = 0 curve vanishes in the zero degree limit.

The next 1 -+ 4 transition has a finite value at zero degree and is almost flat up to about

1200. As the value of initial J is increased further, the DCS become independent of J. For

example, 8 -+ 11 and 10 -- 13 cross sections are almost identical. This situation exists for

other energies also (not shown).

Finally in Figs. 7.9-7.12 we have shown the averaged integral ((at"') and (a(.'))

cross sections for CH 4 and SiH 4 molecules respectively. These Figs. (7.9-.12) show that

the averaged integral cross sections are reduced significantly; although the general shape

does not change appreciably. In Table 7.3 we have given (1tjj') at various gas temperatures

of the CH 4. There is very little change in these cross sections going from 100 K to 500 K.

Table 7.4 provides similar data for the case of Sill4 molecule.

Miller et al. [52] have given the branch structure (see their Fig. 2(b)) after summing

up all transitions with the same AJ. Earlier Read [691 has discussed the classification of

rotational transition into branches. In this structure we can clearly see that the area of the

plus branch (i.e., AJ = +1, +2, +3, and +4 ) is always larger than the corresponding area

of the negative branch ( i.e., AJ = -1, -2, -3, and -4). This is true in our calculations

also (see Table 7.3) where DCS for the +AJ are always higher than the -AJ values. This

is a consequence of the principle of detailed balance.

In Tables 7.5 and 7.6 we have provided state-to-state rotational excitation cross sec-

tions with and without rotational averaging for the CH 4 and Sill4 cases respectively. We

see a significant change in the cross sections at all energies shown in these tables. In gen-

eral, the averaged quantities are reduced. At various gas temperatures (see Tables 7.5 and

7.6), the averaged cross sections differ from each other.

Finally, we can provide a large set of cross section data for both the targets on state-

to-state rotational processes in the 0.1-20 eV energy range. The tabulated values of

da/dQ(IAJ I = 0, 1, 2,3,4,5,6) at 0.1-20 eV are also available fromn the PI at request.
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Table 7.1.

State-to-State rotational excitation differential cross sections at 5 eV for e-CH 4 case. A
number like 7.7355-02 means 7.736 x10 - 2

J -+ J' DCS (150) DCS (450) DCS (900) DCS (1200) at(JJ') al(JJ)

0 -* 0 4.0032 1.1786 1.5889 7.736-02 18.292 16.338

0 -3 1.604-03 1.390-02 3.343-02 3.064-02 0.420 0.548

0 -- 4 8.519-02 7.385-02 5.439-02 5.866-02 0.799 0.772

1 -+ 1 4.0032 1.1786 1.5889 7.736-02 18.292 16.338

1 - 2 3.820-04 3.311-03 7.964-03 7.299-03 0.100 0.1306

1 - 3 2.263-02 2.379-02 2.526-02 2.543-02 0.3474 0.3829

1 -- 4 2.909-02 3.057-02 3.245-02 3.268-02 0.4464 0.4920
1 - 5 3.470-02 3.009-02 2.219-02 2.395-02 0.3261 0.3149

2 -- 1 1.376-04 1.193-03 2.S69-03 2.629-03 3.603-02 4.703-02

2 -- 2 4.0129 1.1888 1.5997 8.826-02 18.441 16.502

2 - 3 1.358-02 1.428-02 1.516-02 1.526-02 0.2085 0.2298
2 4 1.746-02 1.836-02 1.950-02 1.965-02 0.2682 0.2957
2 - 5 2.133-02 2.242-02 2.381-02 2.400-02 0.3276 0.3611
2 -6 2.459-02 2.133-02 1.572-02 1.697-02 0.2311 0.2232
2 -- 7 1.253-05 1.705-05 3.234-05 5.148-05 4.683-04 6.101-04
7 -2 1.401-06 1.907-06 3.617-06 5.757-06 5.237-05 6.823-05
7 - 3 4.437-03 3.848-03 2.837-03 3.062-03 4.169-02 4.027-02
7 - 4 5.840-03 6.140-03 6.520-03 6.570-03 8.968-02 9.887-02
7 -- 5 7.133-03 7.500-03 7.964-03 8.025-03 0.1095 0.1208

7 -- 6 8.424-03 8.856-03 9.404-03 9.476-03 0.1294 0.1426
7 -- 7 4.0129 1.1889 1.5997 8.828-02 18.441 16.502

7 --- 8 1.099-02 1.156-02 1.227-02 1.237-02 0.1688 0.1861
7 - 9 1.227-02 1.290-02 1.370-02 1.381-02 0.1885 0.2078

7 --+ 10 1.355-02 1.424-02 1.512-02 1.524-02 0.2080 0.2294

7 -- 11 1.447-02 1.254-02 9.249-03 9.984-03 0.1359 0.1313

7 -- 12 6.938-06 9.440-06 1.791-05 2.850-05 2.593-04 3.378-04
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Table 7.2. Partial (S(ji; JJ')) and total (S(p; J)), at 5 eV for the e-CH 4 collisions.

E=0.2 eV E=5eV
J -- J' S(1; JJ') S(2; JJ') S(3; JJ') S(1; JJ') S(2; JJ') S(3; JJ')

0 -- 3 1.1239-03 6.4573-07 3.7099-10 1.2063 6.9304-04 3.9817-07

0 -- 4 3.4565-04 3.3098-07 3.1692-10 3.8270 3.6645-03 3.5084-06

0 - 6 2.6083-04 5.2448-07 1.0547-09 2.0413-02 4.1046-05 8.2537-08

1 - 2 2.712-04 1.558-07 8.952-11 2.874-01 1.651-04 9.485-08

1 -- 3 4.671-04 3.033-07 2.077-11 1.395 1.182-03 1.043-06

1 - 4 5.924-04 3.846-07 2.634-10 1.793 1.519-03 1.340-06

1 - 5 2.143-04 2.847-07 4.325-10 1.564 1.504-03 1.452-06

1 - 6 8.727-05 1.755-07 3.529-10 6.805-03 1.368-05 2.752-08

1 -- 7 9.802-05 1.971-07 3.964-10 7.845-03 1.578-05 3.172-08
2 1 9.891-05 5.683-08 3.265-11 1.035-01 5.947-05 3.416-08

2 - 2 2.035-04 1.321-07 9.048-11 5.982-01 5.068-04 4.473-07

2 -- 3 2.821-04 1.832-07 1.254-10 8.372-01 7.092-04 6.260-07

2 -+ 4 3.959-04 3.087-07 3.127-10 1.0787 9.171-04 8.159-07

2 -+ 5 4.755-04 3.708-07 3.756-10 1.3175 1.120-03 9.965-07

2 - 6 1.498-04 1.990-07 3.023-10 1.1085 1.066-03 1.029-06

2 7 5.928-05 1.192-07 2.397-10 4.708-03 9.467-06 1.904-08
2 9- 8 6.506-05 1.308-07 2.631-10 5.330-03 1.072-05 2.155-08

7 - 1 4.683-06 9.417-09 1.894-11 3.160-04 6.354-07 1.278-09
7 -+ 2 7.762-06 1.561-08 3.139-11 5.265-04 1.059-06 2.129-09

7 .. 3 3.060-05 4.065-08 6.174-11 2.000-01 1.923-04 1.857-07

7 - 4 1.428-04 1.113-07 1.128-10 3.607-01 3.067-04 2.728-07

7 -+ 5 1.719-04 1.341-07 1.358-10 4.406-01 3.746-04 3.333-07

7 - 6 1.995-04 1.556-07 1.576-10 5.203-01 4.424-04 3.935-07

7 -- 7 2.251-04 1.756-07 1.778-10 5.998-01 5.099-04 2.728-07

7 - 8 2.484-04 1.937-07 1.962-10 6.791-01 5.773-04 5.136-07

7 - 9 2.689-04 2.097-07 2.124-10 7.581-01 6.445-04 5.734-07

7 - 10 2.861-04 2.231-07 2.260-10 8.368-01 7.114-04 6.329-07
7 - 11 8.156-05 1.084-07 1.646-10 6.520-01 6.269-04 6.053-07

7 - 12 2.956-05 5.943-08 1.195-10 2.607-03 5.242-06 1.054-08

7 - 13 2.985-05 6.003-08 1.207-10 2.811-03 5.652-06 1.137-08

S(L; 0) 1.7304-03 1.5012-06 1.7426-09 5.0536 4.3986-03 3.9896-06

S(1i; 1) 1.7303-03 1.5010-06 1.7423-09 5.0536 4.3986-03 3.9896-06

S(ji; 2) 1.7300-03 1.5007-06 1.7418-09 5.0536 4.3985-03 3.9896-06

S(jt; 3) 1.7296-03 1.5002-06 1.7410-09 5.0536 4.3985-03 3.9896-06

S(p; 7) 1.7267-03 1.4966-06 1.7353-09 5.0536 4.3985-03 3.9896-06
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Table 7.3

Averaged moments, (S(p)), at 300 N for both the CH 4 and Sil 4 molecules as a function

of impact energy. All quantities are in units of 10-20 cm 2 . A number like 9.4689-03 means

9.4689 x 10- 3 .

CH 4  SiH 4

E (eV) (S(1)) (S(2)) (S(3)) (S1)> 'S(2)) (S(3))

0.5 9.4689-03 7.0219-06 6.5976-09 5.7035-02 1.9118-05 7.0480-09

0.8 1.9726-02 1.4905-05 1.3686-08 1.3850-01 4.7202-05 1.7437-08

1.0 2.9072-02 2.2578-05 2.0747-08 2.2140-01 8.5138-05 4.0045-08

2.0 2.0601-01 1.6459-04 1.4344-07 1.5960-01 7.1955-04 3.4236-07

3.0 8.7060-01 7.1289-04 6.2159-07 6.8700 4.2248-03 2.1843-06

4.0 2.4317 2.0627-03 1.8381-06 8.4114 4.2248-03 2.1843-06

5.0 5.0536 4.3985-03 3.9896-06 6.7770 3.4008-03 1.8326-06

7.5 11.083 9.8819-03 9.16-5-06 7.7804 4.4423-03 3.1630-06
10.0 11.586 1.0296-02 9.6791-06 9.1768 5.9293-03 4.7698-06

15.0 9.7749 8.6949-03 8.8677-06 7.1206 4.8130-03 4.0314-06
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Table 7.4.

The state-to-state differential cross sections at 900 for e-CH4 scattering at 0.5 and 5 eV. The 0.5
eV numbers are in units of 1020 cm 2 , while the 5 eV results are in units of 10-18 cm 2 .

J AJ=+1 AJ=-1 A J=+2 A J=-2 A J=+3 A J=-3 A J=+4 A J=-4

0.5 eV

0 - - - 1.4404 0.1272 -

1 0.2068 - 0.2202 - 0.2191 0.0197 -

2 0.2208 0.2079 0.2254 - 0.2239 - 0.0196 -

3 0.2263 0.2226 0.2248 0.2232 0.2230 0.2090 0.0195 -

4 0.2260 0.2286 0.2242 0.2295 0.2221 0.2243 0.0194 0.0145
5 0.2257 0.2289 0.2236 0.2300 0.2211 0.2310 0.0193 0.0204
6 0.2254 0.2292 0.2230 0.2307 0.2202 0.2318 0.0191 0.0251
8 0.2247 0.2298 0.2217 0.2318 0.2184 0.2336 0.0189 0.0207
10 0.2242 0.2304 0.2205 0.2330 0.2165 0.2353 0.0187 0.0209
12 0.2236 0.2310 0.2193 0.2342 0.2146 0.2370 0.0185 0.0211
14 0.2230 0.2316 0.2181 0.2353 0.2128 0.2387 0.0182 0.0213

5.0 eV
0 - - - - 3.3400 - 5.4400 -

1 0.4778 - 1.0823 - 1.0818 - 0.6051 -

2 1.0826 0.4781 1.0831 1.0824 - 0.6048 -

3 1.0836 1.0835 1.0829 1.0838 1.0820 0.4783 0.6044 -
4 1.0834 1.0847 1.0826 1.0851 1.0816 1.0843 0.6041 0.6059
5 1.0833 1.0848 1.0823 1.0854 1.0812 1.0858 0.6038 0.6073
6 1.0831 1.0850 1.0820 1.0857 1.0807 1.0862 0.6035 0.6076
8 1.0829 1.0853 1.0814 1.0862 1.0800 1.0871 0.6028 0.6082
10 1.0826 1.0855 1.0809 1.0868 1.0790 1.0879 0.6022 0.6089
12 1.0823 1.0858 1.0803 1.0874 1.0782 1.0888 0.6016 0.6095

14 1.0820 1.0861 1.0800 1.0879 1.0773 1.0896 0.6009 0.6101
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Table 7.5

State-to-state rotational excitation cross sections with ((otJj')) and without (aJj') rota-
tional averaging for the case of e-CH4 collisions. All numbers are in unit of 10-16 cm 2 .

Energy (eV) or, (or3)i "  30K (or,3)5

0.5 0.0025 0.0009 0.00081 0.00080
0.8 0.0047 0.00187 0.00162 0.00160
1.0 0.00614 0.00258 0.00227 0.00225
2.0 0.0326 0.0157 0.0146 0.0145
3.0 0.1151 0.0632 0.0585 0.0581
5.0 0.4200 0.3313 0.3012 0.2994
7.5 0.7381 0.7078 0.6310 0.6274
10.0 0.9028 0.7746 0.6771 0.6730
15.0 1.1891 0.7241 0.6239 0.6196

04 o, oo- ( 0 .4)50oo0Ort (a04100 (ao, (Or

0.5 0.00032 0.00011 0.000084 0.000082
0.8 0.0011 0.00033 0.000262 0.000257
1.0 0.0021 0.00062 0.00050 0.00049
2.0 '0.0228 0.0061 0.00532 0.00521
3.0 0.1117 0.0304 0.00259 0.02536
5.0 0.7993 0.2251 0.1855 0.1814
7.5 1.8556 0.5437 0.4313 0.4220
10.0 1.8398 0.5627 0.4294 0.4201
15.0 1.2006 0.3879 0.2880 0.2819
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Table 7.6

State-to-state rotational excitation cross sections with ((a/i')) and without (a/J') ro-
tational averaging for the case of e-SiH4 collisions. All numbers are in units of 10-16
cm 2 .

Energy (eV) t (at 3)o (at3)3OOK (at3)5ooK

0.5 0.0342 0.0104 0.0104 0.0099
0.8 0.0793 0.0246 0.0239 0.0238
1 0 0.1132 0.0367 0.0356 0.0355
2.0 0.3571 0.1951 0.1908 0.1903

3.0 0.6039 0.6892 0.6780 0.6765
5.0 0.8118 0.7027 0.6905 0.6890
7.5 1.6663 0.8441 0.8279 0.8258
10.0 1.6637 0.8849 0.8706 0.8688
15.0 1.2393 0.6578 0.6479 0.6468

04 OT4)OOK~ 0a4 300K 0a4)500 K

0.8 0.0049 0.0012 0.0011 0.0011
1.0 0.0125 0.0033 0.0031 0.0031
2.0 0.3951 0.0953 0.0894 0.0885
3.0 2.2616 0.5456 0.5117 0.5068
5.0 2.0235 0.4945 0.4639 0.4595
7.5 1.3635 0.3766 0.3542 0.3509
10.0 1.3952 0.4233 0.3988 0.3952
15.0 0.9833 0.3146 0.2967 0.2941
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FIG. 7.11
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C C114 collisions with (solid line) and without (dash lines) rotational averaging.
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8. CONCLUSIONS AND FUTURE PROGRAM

During the period of June 1990- June 1991, the following research was completed

and has been presented in this report:

We have presented rotationally elastic, inelastic and summed cross sections for electron
scattering with several polyatomic molecules (CH 4 , SiH 4 , GeH 4 , H2 0, and NH 3 ) in a
highly sophisticated close-coupling non-empirical theory. Exchange effects are included

exactly, while polarization corrections are considered approximately but without involving
any fitting parameter. Results are compared with measurements where such data are

available. No previous theoretical investigation is available on these molecules in such

detail and energy range. This study has drawn several important conclusions: (1) exchange

effects at the exact level and model polarization potentials can describe low energy e-
molecule scattering quite accurately, (2) polarization effects should be included in a theory
where target orbitals are relaxed in the presence of incoming particle, (3) the effect of gas

temperature on the cross sections is crucial for rotationally inelastic channels, (4) a single-

center approach can be useful for many polyatomics without any convergence problem, (5)
the iterative scheme is quite promising tool in future if employed in an optimized way as

suggested in this study.

During the June 1991 - May 1992 period, we plan to do the following:

Our e-NH3 and H20 results presented here are not complete yet. We hope to get
these data ready very soon. In addition, the calculations on the GeH 4 molecule are being

repeated in full close-coupling approach rather than the spherical model. We are in the
process of undertaking some big molecules such as the CF 4 , SF 6 , CC14 , etc., to investigate

low energy electron behaviour. These targets have been studied in the laboratory quite

recently. Our present investigation will be extended to study vibrational excitation process
in the present energy regime. In addition, molecular wave functions for open shell targets
and radicals and ions of polyatomic molecules will be calculated from existing molecular

structure codes.

During the June 1992 - May 1993 period, we plan to do the following:

Our present computer codes are fully capable of carrying out accurate calculations for
closed-shell molecules. We plan to modify them in order to study open-shell (such as the
radicals of polyatomic molecules) and ionic molecules. For such targets, the theoretical
work is almost non-existential. We hope to finish during the next few years the detailed

results on several big molecules such as SF 6 , CF 4 , CC14 , PbH4 for elastic, rotational and
vibrational channels.
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